
Multi-Objective Microservice Orchestration:
Balancing Security and Performance in CCAM

Stefano Berlato1,2, Silvio Cretti2, Domenico Siracusa2, Silvio Ranise2,3

1Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
2Center for Cybersecurity, Fondazione Bruno Kessler, Trento, Italy, {sberlato,scretti,dsiracusa,ranise}@fbk.eu

3Department of Mathematics, University of Trento, Trento, Italy

Abstract—We (devise and) demonstrate the benefits of a
methodology and a toolset for orchestrating Cloud-native ap-
plications to balance the minimization of risks due to the
presence of security threats and the achievement of service
performance requirements — expressed on, e.g., computational
resources, network throughput and latency. The demo proves
the effectiveness of the methodology in orchestrating a set of
microservices implementing a prominent Cooperative, Connected
and Automated Mobility (CCAM) service.

Index Terms—Orchestration, Cloud, Security, CCAM

I. INTRODUCTION

Cooperative, Connected and Automated Mobility (CCAM)
allows vehicles to communicate and make collective driving
decisions. The 5G-CARMEN [1] project investigated CCAM,
proposing a Cooperative Lane Change (CLC) service in which
vehicles install a front-end (FE) to broadcast their position,
speed and trajectory through Cooperative Awareness Messages
(CAMs); a message broker, called data manager (DM), groups
CAMs by areas of interest (e.g., highway acceleration lanes).
Hence, FEs can build an internal representation of nearby traf-
fic conditions, making lane change maneuvers easier and safer.
CLC considers using Cryptographic Access Control (CAC) to
guarantee the confidentiality and the integrity of CAMs while
allowing authorized vehicles only to participate. With CAC,
one or more proxies (PRs) en/decrypt CAMs generated by FEs
before transmission to or from the DM, while a database —
called metadata manager (MM) — stores cryptographic keys;
we summarize the data flow in Figure 1. In CLC, FEs, PRs,
DM and MM can be implemented as microservices managed
by Kubernetes (K8s) — chosen for its popularity and features
such as resiliency, load balancing, and zero-touch deployment
— across 4 types of computing regions: Public Cloud (e.g.,
Azure), Private Cloud, Edge and vehicles.1 The Private Cloud
is in the premises of the organization offering CLC, while the
Edge is (logically) co-located with the road-side infrastructure.

Problem Characterization. The orchestration (and especially
the definition of the placement into regions) of microservices is
not trivial when considering the peculiarities of CLC. Indeed,

This work was partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European
Union — NextGenerationEU. Also, we gratefully thank Marco Centenaro
(orcid.org/0000-0003-1664-8015) for his valuable feedback on this article.

1Deploying microservices of Cloud-native applications in smart vehicles
is realistic and believed to be an integral part of the evolution of intelligent
transportation systems in both academia [2] and the industry [3].

1. CAM

3. Encrypted CAM

PR-AMM
2. Key

5. Key

PR-B

6. CAM CAM
4. Encrypted

DM

Veh
icle

-B

Veh
icle

-A

FE-A

FE-B

Fig. 1: Data Flow in CLC

like many CCAM services, CLC is marked by a delicate trade-
off between performance and security [4]. On the one hand,
CLC requires end-to-end (E2E) vehicle-to-vehicle latency to
be ≤ 100ms for the exchange of up-to-date CAMs [1, §D4.1];
bandwidth is not a concern given the limited size of CAMs
(< 300 bytes). Similarly, CLC microservices require a certain
amount of computational resources for the timely derivation
of driving decisions. On the other hand, the placement of
the microservices must consider the (possible) presence of a
heterogeneous set of threats (e.g., external attackers, malicious
insiders, partially trusted service providers) to the security (i.e.,
confidentiality, integrity, and availability) of CAMs [4].

Solution and Demo. We (devise and) demonstrate the ben-
efits of a methodology and a toolset that map the problem of
finding the placement of CLC microservices to regions of a
K8s cluster into a Multi-Objective Combinatorial Optimization
Problem (MOCOP) [5] which considers the fulfillment of
service performance requirements plus CAMs security. We im-
plement our methodology — named MOMO (short for Multi-
Objective Microservice Orchestration) — as a placement algo-
rithm for K8s by integrating it into FogAtlas [6], a framework
to manage the Cloud-to-Thing Continuum. Then, we propose
a demo over the CLC service to showcase the effectiveness of
MOMO with respect to 3 other basic placement strategies.

II. MULTI-OBJECTIVE MICROSERVICE ORCHESTRATION

Given the sets of microservices M and regions R, MOMO
derives the set of all placements PL = {pl ∈ P(M × R) :
|{m : (m,−) ∈ pl}| = |M|} (P is the power set and |·| the set
cardinality). Then, MOMO evaluates placements against a set
of objective functions, where an objective function go : PL 7→
Z measures how much a placement attains an objective o ∈ O;
the internal definition of go (i.e., how to compute its value)

K8s

FADepl Controller

Scheduler
Plugin

Placement
2. Application,

infrastructure and

3. Placement Scores

1. Cloud-native

Developer
4. Deploy according to the scores ...

application
Algorithm

(MOMO)
further information

Fig. 2: Architecture of FogAtlas

depends on o. Finally, MOMO maps the problem of finding the
placements yielding the maximum tuple of objective function
values as the MOCOP maxpl∈PL (go1

(pl), . . . , gon
(pl)). We

use the Pareto Dominance relation as ordering relation for
max: given pl1, pl2 ∈ PL, pl1 dominates pl2 iff (∀o ∈
O go(pl1) ≥ go(pl2)) ∧ (∃o ∈ O go(pl1) > go(pl2)). A
pl ∈ PL is a Pareto Optimal (i.e., one of the best) solution
to the MOCOP when no placement pl ′ ∈ PL dominates pl .

We apply MOMO to CLC (see Figure 1), thus M = {FE-
A, FE-B, PR-A, PR-B, MM, DM} and R = {Vehicle-
A, Vehicle-B, Edge, Private, Public} — for simplicity, we
assume each region r ∈ R to have one node nr , i.e., a
single (physical or virtual) machine on which microservices
can run. As said in Section I, we identify two types of
objectives, i.e., performance and security objectives: the for-
mer comprises computational resources, network bandwidth
and E2E latency (OP = {CPU ,MEM ,BAN ,LAT}), the
latter confidentiality (C), integrity (I) and availability (A)
of CAMs (OS = {C, I,A}); hence, O = OP ∪ OS . We
define performance objective functions in Table I: a placement
must be feasible according to the available computational
resources (gCPU , gMEM) while E2E Latency (gLAT) considers
cumulative latency across the service data flow (i.e., the one
in Figure 1) — network bandwidth (gBAN) is not a concern in
CLC. We use the security objective functions gC , gI , and gA
— measuring the achievement of the corresponding objective
from 0 (low) to 2 (high) — defined in [7], where the authors
propose a risk assessment to evaluate data security (e.g.,
CAMs) in services using CAC; the intuition is that, the more
likely (or impactful) is a security threat to strike in a region
or communication channel, the higher the risk associated with
placing a microservice in that region or exchanging data over
that channel. Unfortunately, for lack of space, we cannot report
here more details, and refer the interested reader to [7].

As deriving driving decisions timely is crucial for safety,
we seek the most secure among the placements that satisfy all
performance objectives. Hence, we solve the MOCOP using a

TABLE I: Definition of Performance Objective Functions∗

gCPU (pl) = 1 if (
∑

(m,r)∈pl mCPU) ≤ nrCPU ∀r ∈ R, else 0

gMEM (pl) = 1 if (
∑

(m,r)∈pl mMEM) ≤ nrMEM ∀r ∈ R, else 0

gBAN (pl) = 1 (network bandwidth is not a concern in CLC [1, §D4.1])

gLAT (pl) =
1 if (

∑
(m1,m2)∈DF LAT (r1, r2)) ≤100ms — where

(m1, r1), (m2, r2) ∈ pl — else 0

∗mCPU and mMEM are the processing and memory computational require-
ments of a microservice m , while nrCPU and nrMEM are the processing
and memory computational resources available in the node nr in the region r .
DF is the data flow shown in Figure 1, i.e., DF = { (FE-A, PR-A), (PR-A,
MM), (PR-A, DM), (DM, PR-B), (PR-B, MM), (MM, PR-B), (PR-B, FE-B)
}, while LAT (r1, r2) is the latency between r1 and r2 (see Figure 3).

bounded objective function method [5] that maximizes a tuple
of objective functions — (gc, gI , gA), in our case — and uses
others (i.e., gCPU , gMEM , gBAN and gLAT) to form additional
constraints; formally, maxpl∈PL (gC(pl), gI(pl), gA(pl)) sub-
ject to 0 < gop(pl) ≤ 1 ∀op ∈ OP . We highlight that this is
just one of the many methods to tackle MOCOPs (see [5]).

III. ARCHITECTURE AND DEMO SETUP

Figure 2 shows the architecture of FogAtlas: (1) a Cloud-
native application, encoded as a graph of microservices and
modelled as a K8s Custom Resource Definition with a FADepl
resource (see [8] for more details), is sent to the FADepl
Controller component; this (2) invokes a Placement Algorithm
(i.e., MOMO) with, as input, the application (i.e., M), the
infrastructure (i.e., R), and further information to compute
objective functions (i.e., computational resources available
in each node, network resources, computational resources
required by each microservice, E2E latency constraint). The
Placement Algorithm (3) computes Placement Scores encod-
ing the best placement identified; the Scheduler Plugin (a
custom plugin implemented in the K8s Scheduling Framework
acting during the score phase of the K8s scheduling cycle) uses
the scores to assign a node to each microservice. Finally, K8s
(5) deploys the microservices on the infrastructure accordingly.

We run the demo in an emulated environment with a K8s
cluster deployed in our data center. As in Figure 3, the cluster
has the 5 regions presented in Section I. We refer to experi-
mental settings validated in 5G-CARMEN [1, §D4.3] and the
work in [9] for distributing the cluster with realistic network
latency and computational resources for each node. For the
demo, we reduce the computational resources by a factor of 8
to fit the cluster in our data center and tune the latency with
the tc utility. As for microservices, we choose Redis as MM,
the Mosquitto MQTT broker as DM, and the CryptoAC tool
[10] implementing CAC for MQTT as PR-A/B. Since 5G-
CARMEN lacks the implementation for the FE (and driving
decisions are not relevant in our demo), we implement FE-A/B
using Locust and ACME [11] to measure the E2E latency of
a CAM going from vehicle-A to vehicle-B (see Figure 1).
Finally, we derive computational resource requirements of the
MM, DM and PR-A/B from their documentation; for FE-
A/B — there being no implementation — we can only make
reasonable assumptions. For consistency with the cluster, we
scale requirements on computational resources by 8 and report
them in Table II (the CPU is in milli-units, the MEM in MB).2

IV. DEMONSTRATION AND RESULTS

Using the setup in Section III, we demonstrate the effec-
tiveness of MOMO in identifying the placement that satisfies

2The replication package is available at gitlab.fbk.eu/fogatlas-k8s/uc-ccam.

TABLE II: Requirements of CLC Microservices
Microservice CPU MEM Microservice CPU MEM

FE-A 50 50 FE-B 50 50
PR-A 130 64 PR-B 130 64
MM 50 50 DM 50 50

58msPublic
4 CPU/8 GB RAM

58ms

Private
3 CPU/7 GB RAM

Edge
2 CPU/6 RAM

58ms

12ms
Vehicle-A

1 CPU/1 GB RAM 1 CPU/1 GB RAM

Vehicle-B
12ms 12ms

58ms 58ms

Fig. 3: K8s Cluster Demo Setup

the performance requirements while maximizing the security
of CAMs in CLC. To this end, we compare MOMO with 3
other placement strategies, for a total of 4 experiments:

1) K8s - as a baseline strategy, we use the default placement
of K8s, which mainly considers resourceful nodes;

2) performance - we use MOMO only for the satisfaction of
performance constraints (0 < gop(pl) ≤ 1 ∀op ∈ OP);

3) security: we use MOMO only for the maximization of the
security of CAMs (maxpl∈PL (gC(pl), gI(pl), gA(pl)));

4) MOMO: we use MOMO as described in Section II.

A. Demo Workflow

In all 4 experiments, we adopt the following workflow:
1) force the assignment of FE-A/B to vehicle-A/B, respec-

tively (as intuitively expected by CLC);
2) deploy the rest of the CLC microservices following the

placement strategy of the corresponding experiment;
3) take note of the placement of microservices on the nodes;
4) configure and run Locust to start transmitting CAMs;
5) collect (through Locust) the E2E latency of the trans-

mission of 360 CAMs — each experiment lasts 6 minutes
so to reduce measurement errors — and compute the E2E
latency mean and median.

B. What the Audience Will See

To speed up the demo execution, we plan to set up 4
identical K8s clusters and run the aforementioned experiments
in parallel. Through a dedicated interface, the audience will
observe the placement of microservices, comparing the results
obtained in each experiment on the performance and security
requirements imposed.

C. Results

We report the placements, security objective function values,
and median/mean E2E latency results in Table III (we omit the
other requirements as all placements respect them). Note that
E2E latency includes also the microservices processing time
(around 15ms) which is relatively small (4%—37%) but not
irrelevant. The K8s and security experiments do not respect the
E2E latency constraint (≤ 100ms), as the former just assigns
microservices to the most resourceful nodes ignoring latency
among regions, while the latter achieves the highest possible
security, assigning PRs to vehicles-A/B — for CAMs E2E
protection — and the MM and DM to the Private Cloud,
the most secure region (but also distant from vehicles). The
performance experiment fulfills all constraints by relying on

the Edge. However, gC , gI , and gA have lower values: one of
the reasons is that CAMs sent from vehicle-A are protected
by PRs only after reaching the Edge, and are thus exposed
to the threats present in the (public) network in-between.
MOMO, on the one hand, improves E2E latency while losing
little security with respect to the security experiment and,
on the other hand, improves security while entailing slightly
higher (but still acceptable) E2E latency with respect to
the performance experiment. In other words, the placement
proposed by MOMO is not the best either performance- or
security-wise, but it allows to balance a heterogeneous set of
relevant — and seemingly conflicting — objectives.

V. CONCLUSIONS AND FUTURE WORK

In this demo paper, we demonstrated MOMO, a method-
ology for orchestrating microservices that consists of solving
a MOCOP over a set of relevant (performance and security)
objectives, in the context of the CLC service. Compared with
other 3 placement strategies, MOMO proved its effectiveness
in satisfying both security and performance requirements.

As future work, we plan to test MOMO after scaling on the
number of vehicles and to verify the dynamic re-placements
of microservices by monitoring the evolution of objective
functions, e.g., considering changes in latency, in microser-
vices processing time, in real-time usage of computational and
network resources and in security threats as they occur (e.g.,
DDoS).

REFERENCES

[1] 5G-CARMEN. https://5g-ppp.eu/5g-carmen/.
[2] R. Morabito, R. Petrolo, V. Loscri, N. Mitton, G. Ruggeri, and A. Moli-

naro. Lightweight virtualization as enabling technology for future smart
cars. In 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pages 1238–1245. IEEE, 2017.

[3] RedHat. https://www.redhat.com/en/blog/running-containers-cars.
[4] M. Centenaro, S. Berlato, R. Carbone, G. Burzio, G. F. Cordella,

R. Riggio, and S. Ranise. Safety-related cooperative, connected, and
automated mobility services: Interplay between functional and security
requirements. IEEE Vehicular Technology Magazine, 16(4):78–88, 2021.

[5] R.T. Marler and J.S. Arora. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization,
26(6):369–395, 2004.

[6] FogAtlas. http://fogatlas.fbk.eu/.
[7] S. Berlato, R. Carbone, A. J. Lee, and S. Ranise. Formal modelling

and automated trade-off analysis of enforcement architectures for cryp-
tographic access control in the cloud. ACM Transactions on Privacy
and Security, 25(1):1–37, 2022.

[8] FogAtlas CRD. https://gitlab.fbk.eu/fogatlas-k8s/crd-client-go.
[9] F. Palumbo, G. Aceto, A. Botta, D. Ciuonzo, V. Persico, and A. Pescapé.

Characterization and analysis of cloud-to-user latency: The case of azure
and AWS. Computer Networks, 184:107693, 2021.

[10] CryptoAC. https://cryptoac.readthedocs.io/.
[11] Access Control Mechanisms Evaluator. https://github.com/stfbk/ACME.

TABLE III: Experiments Placements, Security, E2E Latency
Microservices and Regions∗ Security∗∗ E2E LatencyExperiment PR-A MM DM PR-B gC gI gA Median Mean

K8s Public Private Edge Private 373ms 374ms
performance Edge Edge Edge Edge 40ms 40ms

security V-A Private Private V-B 373ms 375ms
MOMO V-A Edge Edge V-B 94ms 95ms

∗V-A and V-B are abbreviations for vehicle-A and vehicle-B, respectively
∗∗ , and correspond to 0, 1, and 2, respectively (the fuller, the better)

