
A Large-Scale Study on the Adoption of Anti-Debugging and Anti-Tampering
Protections in Android Apps

Stefano Berlato∗

Fondazione Bruno Kessler, Trento, Italy

Mariano Ceccato∗

Fondazione Bruno Kessler, Trento, Italy

Abstract

Android apps are subject to malicious reverse engineering and code tampering for many reasons, like premium features
unlocking and malware piggybacking. Scientific literature and practitioners proposed several Anti-Debugging and
Anti-Tampering protections, readily implementable by app developers, to empower Android apps to react against
malicious reverse engineering actively. However, the extent to which Android app developers deploy these protections
is not known.

In this paper, we describe a large-scale study on Android apps to quantify the practical adoption of Anti-Debugging
and Anti-Tampering protections. We analyzed 14,173 apps from 2015 and 23,610 apps from 2019 from the Google
Play Store. Our analysis shows that 59% of these apps implement neither Anti-Debugging nor Anti-Tampering pro-
tections. Moreover, half of the remaining apps deploy only one protection, not exploiting the variety of available
protections. We also observe that app developers prefer Java to Native protections by a ratio of 99 to 1. Finally, we
note that apps in 2019 employ more protections against reverse engineering than apps in 2015.

Keywords: Anti-debugging, Anti-tampering, Android apps, Static analysis

1. Introduction

Being the most diffused operating system for smartphones, Android presents a way for developers to share their
apps with billion end-users. Moreover, many of these apps produce revenues through advertisements, in-app pur-
chases, direct sales or subscriptions to premium features. In these cases, apps embed valuable assets that their de-
velopers want to protect. The possibility to steal such assets attracted several malicious attackers. Unfortunately,
attackers can easily recover source code from compiled Android apps. Then, attackers can tamper with the logic of
the apps to their advantage, repackage them and distribute them again. In the last six years, the scientific community
published more than 57 research papers [1] on repackaged apps, highlighting how the problem is relevant and actual.
Spotify is a perfect example of how this can happen. Many attackers studied how to tamper with the code of Spotify to
unlock premium features for free. Then, they published the tampered versions of Spotify on the internet, available for
everyone to download. In the end, Spotify had so many tampered versions available on the internet that the developers
had to take drastic countermeasures. The developers cracked down and banned several accounts who they thought
were using tampered versions of Spotify [2]. Another remarkable example is the paid mobile game “Monument Val-
ley”. The owner company reported that just 5% of the end-users paid for downloading the game from the Google Play
Store[3]. All the other end-users obtained a tampered version from third-party app stores or other sources.

Ceccato et al. [4] studied in detail the behaviours and strategies adopted by attackers performing malicious reverse
engineering. They found that dynamic analysis through debugging is a prominent step for both identifying the portion

∗FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
Email addresses: sberlato@fbk.eu (Stefano Berlato), ceccato@fbk.eu (Mariano Ceccato)

Preprint submitted to Information Security and Applications February 5, 2020

of the code to attack and for validating the results of the attack. Therefore, it seems that debugging and tampering are
the two most effective strategies to attack and Android app.

Android apps developers can leverage many protections to mitigate or delay a tampering attack. Anti-Debugging
(AD) and Anti-Tampering (AT) are two categories of protections that mitigate these attack strategies. Differently
from passive Obfuscation techniques where the code of the app is changed to make it harder to understand, AD and
AT protections allow an app to react against malicious reverse engineering actively at run-time. In particular, AD
protections give the app the ability to (i) prevent a debugger to attach to the process of the app; (ii) spot the presence
of a debugger or an emulated environment at run time; (iii) tamper with the data structures of the debugger to hinder
its correct functioning. AT protections allow the app to (i) detect alterations from its original state by checking the
integrity of the code; (ii) verify the source of the app itself (i.e. the app store where the app comes from). App
developers can find many suggestions on how to implement these protections both in the literature [5, 6, 7] and in
other informal resources, like the official Android Studio documentation [8] and the OWASP Mobile Security Testing
Guide [9].

However, there is no systematic study that quantifies how often app developers employ these protections. We
present a large-scale study conducted to shed light on the adoption of AD and AT protections in Android apps. To
the best of our knowledge, this is the first work to assess the frequency of usage of such protections. We analyzed
14,173 apps from 2015 and 23,610 apps from 2019 from the top apps in the Google Play Store. The results are
quite surprising: only 41% of these apps actively implement at least one AD or AT protection. Moreover, half of this
41% deploy only one protection, not exploiting the variety of available protections. App developers prefer to deploy
simpler Java protections than Native ones with a ratio of 99 to 1. Unfortunately, Java protections are also easier to
bypass, since attackers can easily recover the source code. Moreover, we observe that apps from 2019 employ more
protections against reverse engineering than apps from 2015.

The paper is structured as follows. In Section 2, we present a survey on AD and AT protections. It is a catalogue
of protections along with a brief high-level description and an example implementation. In Section 3, we describe
our approach to classify the main programming elements of each protection and how they compose into a unique
protection fingerprint. We use these fingerprints to detect protections in the code of apps. We also describe our
tool, called ATADetector, for automating protection detection. Afterwards, in Section 4, we incrementally refine
the fingerprints to improve detection accuracy. In Section 5, we define the research questions and we present the
large-scale study we conducted to answer them. In Section 6, we discuss technical limitations and threats to validity.
Eventually, after a discussion on related work in Section 7 and future work in Section 8, we conclude the paper
in Section 9.

2. Survey of Anti-Debugging and Anti-Tampering Protections

This section presents our categorization of AD and AT protections. First, we briefly describe the attack model
assumed by these protections. Then, we describe our approach for performing the survey. Finally, we present and
discuss each identified protection.

2.1. Attack Model
Following the results described by Ceccato et al. [4], we consider a malicious reserve engineering activity, in

which one or more attackers aim at altering the functioning of an app to gain some advantage. The first step is
code comprehension. The attackers have to unveil the logic behind the app by investigating its code. Consequently,
the attackers can understand where and how to modify the app to achieve their specific goals. The most prominent
technique attackers use is dynamic analysis through debugging [4]. This process usually consists of attaching a
debugger to the process of the app. Using the debugger, the attackers can monitor the status of the app and even
control its execution flow. By controlling the instructions to execute next, the attackers can gain deep insights on
the functioning of the app. Finally, the attackers can change the code of the app. This last operation is commonly
known as Tampering. The attackers tamper with one or more portions of the code of the app to modify its functioning
toward specific outcomes. For instance, suppose an app with premium features. The attackers could tamper with the
portion of the code that checks whether the premium subscription is expired or not to always enjoy premium features.
Therefore, we consider two categories of protections against malicious reverse engineering: Anti-Debugging and
Anti-Tampering.

2

2.2. AD and AT Protections Survey

To gather AD and AT protections, we start from the resource Android app developers consult more often, thus the
Internet. Balebako et al. [10] studied the behaviour of app developers about privacy and security. One of their findings
is that app developers “simply searched online when they were looking for advice”. Also, Balebako et al. found
that developers navigate websites like Hackernews, TreeHouse and StackExchange for security-related researches.
Therefore, we analyze this informal literature to identify descriptions of AD and AT protections. Also, we analyze the
Android official documentation [8], OWASP security guidelines [9], security blogs [11] and code repositories [12, 13].
This survey allows us to define 5 AD protections and 4 AT protections.

2.3. Anti-Debugging protections

• Emulator Detection: Attackers may take advantage of Android emulators to monitor the status of an app.
Attackers can read the values of program variables and sniff Internet traffic, inferring valuable information
about the functioning of the app. However, Android emulators have several default configuration values that
app developers can detect. Therefore, app developers can insert in their apps mechanisms to inspect system
properties to check whether the app executes in an emulator. For instance, it is common to read the model or
the manufacturer of the smartphone to compare it against values related to Android emulators, like “generic” or
“goldfish”.

• Dynamic Analysis Framework Detection: Similar to Android emulators, dynamic analysis frameworks allow
attackers to gain insights on the functioning of an app. These frameworks, like Taintdroid [14], Xposed1 and
Frida2, run on real Android devices and allow manipulating the runtime environment by hooking API calls to
return spurious values. For instance, whenever the app is requesting its digital signature through the Package-
Info.signingInfo attribute, the attackers could use Xposed to intercept this invocation and return whatever value
they like. Moreover, these frameworks allow monitoring the status of Android apps and dynamically altering
their behaviour. Detecting these runtime modifications is not easy. Therefore, the focus of the protection is
often on spotting the presence of these frameworks in the smartphone. The simplest way is to scan package
names, files or binaries to look for resources known to be components of these frameworks

• Debugger Detection: Android supports two debugging protocols: Java level through the Java Debug Wire
Protocol (JDWP) and Linux level with GNU Debugger (GDB). Usually, developers employ debuggers in the
testing phase for findings bugs in their apps. However, attackers can use debuggers to send commands to the
app and alter the execution flow or the values within program variables. For instance, an attacker could tamper
with the value of the variable holding the amount of virtual money in a game app. To be fully protected, an app
has to implement protections against both levels of debugging. An app can detect a JDWP debugger by invoking
the available API through both Java and Native code, and the GDB debugger by checking whether an extra
process (i.e. the GDB debugger) is attached to the process of the app or not. Beside debugger detection strategies,
there are also preventive strategies. For example, only one process at a time can work as a debugger of another
process. Therefore, an app can attach to itself a mock debugger process to prevent a real GDB debugger process
from attaching, because the attachment interface is already engaged.

• Debuggable Status Detection: To make an app available for debugging in an Android device, the attackers have
to alter the “debuggable” flag in the manifest file. This way, Android will start an extra thread for handling the
JDWP protocol. Checking the value of this flag gives a clear indication of the debuggable status of the app.

• Altering Debugging Memory Structure: The status of the global virtual machine in which an app is running is ac-
cessible through the DvmGlobals structure that contains several variables crucial for the functioning of the JDWP
debugger. In Dalvik, the Android virtual machine until Android version 5.0 (Lollipop), there is the global vari-
able gDvm that points to this structure. In ART, the new Android RunTime system from Android version 5.0, this
variable is not available anymore. However, the ART runtime exports some pointers related to JDWP as global

1https://www.xda-developers.com/xposed-framework-hub/
2https://www.frida.re/

3

symbols. Therefore, in both cases, an app can manipulate the behaviour of the debugger by overwriting these
variables. For instance, an app could replace the address of the function jdwpAdbState::ProcessIncoming

with the address of the function JdwpAdbState::Shutdown [9]. This will cause the debugger to disconnect
immediately.

2.4. Anti-Tampering protections

• Signature Checking: Tampering an app usually implies the modification of its code. Then, the attackers have
to repackage the new version of the code into an Android PacKage (APK) file that end-users will install on
their smartphones. Since the Android operating system requires APKs to have a digital signature to check upon
installation, the attackers need to sign the APK file again. The attackers cannot access the private key of the
original developers. So, the attackers will sign the APK file with a different key. Therefore, the most trivial
protection against tampering is to compare the current signature of the APK file with the original one. The app
can obtain the current signature through dedicated APIs using the PackageManager.GET SIGNATURES and the
PackageInfo.signatures (until Android version 8.0) or PackageManager.GET SIGNING CERTIFICATES

and PackageInfo.signingInfo (from Android version 9.0) APIs.

• Code Integrity Checking: Following the same concept of the previous protection, Code Integrity Checking is
another similar protection. This time, the app computes a digest value on a specific resource or file and then
compare it with the expected value. Therefore, an app can access and hash the file containing the Java code
(i.e. the .dex file) and check whether this value is equal to the expected value or not. App developers can
use standard libraries like Zipentry3 to automatically obtain useful values like the Cyclic Redundancy Check
(CRC) error-detecting code.

• Installer Verification: To avoid detection, usually, attackers publish tampered and repackaged apps in third-
party app stores [15]. When installing an app, the Android operating system keeps track of the app store where
the APK file comes from. The app can invoke the PackageManager.getInstallerPackageName API that
returns the package name of the app through which the end-user installed the current app. The protection
consists of checking whether this value is consistent with the app stores where the developers published their
app. Let’s suppose the developers published their app only in the Google Play Store. End-users should have
installed the app through the Play Store app that has “com.android.vending” as the package name. If the value
returned by the PackageManager.getInstallerPackageName API is “cm.aptoide.pt”, the app was installed
from Aptoide4, an independent Android app store. Therefore, some attackers likely tampered the app and
published it on Aptoide.

• SafetyNet Attestation: SafetyNet [16] is a platform security service offered by Google [16]. An app can
invoke SafetyNet to verify the integrity of the smartphone in which it is running. However, SafetyNet can
also provide information about the app that invoked the service, like the signature. Therefore, this information
can be used to perform integrity checks on the app itself.

2.5. Exclusions

Developers can implement many other protections in their apps, that we decided to exclude:

• Root Detection: A end-user can obtain superuser permissions over an Android smartphone through a process
called “Rooting”. With superuser permissions, it is possible to alter system settings, access private areas in
the primary memory and install specialized apps. For instance, with superuser permissions, an attacker can
install dynamic analysis frameworks like Xposed. Even though providing significant insights about the smart-
phone where the app runs, this protection does not address AD or AT directly. Indeed, this protection provides
information about the status of the smartphone rather than on the app itself.

3https://developer.android.com/reference/java/util/zip/ZipEntry
4https://www.aptoide.com/en/home

4

• File Storage Integrity Checking: Some apps may externally download code and resources after they are installed
and then perform checks on them, but this is a discouraged feature [17]. Therefore, an app would not imple-
ment this protection not because the developers are overlooking security, but because downloading code after
installation is a feature not implemented in the app.

• Time-Checks: Another way to detect debuggers is to implement time-checks. The possibility to insert break-
points in the code is one of the most useful features of a debugger. This allows analyzing the execution flow
of the app and the status of the variables. However, this also halts the execution of the process. Therefore, an
app can monitor the elapsed time between two instructions. If this time is longer than a pre-defined threshold,
a debugger has most probably halted the execution in between the operations with a breakpoint. However, an
app may query for the time for many reasons, like performance evaluation, alerts or scheduled notifications.
Therefore, this protection is problematic to detected and it would suffer many false positives.

3. Definition of Protection Fingerprints

We now present our method for the detection of the protections in Android apps. In this section, we describe the
general approach with a concrete example for one protection. Then we illustrate how we combine the elements of each
protection to create a fingerprint. Finally, we present the tool we developed for the automatization of the protection
detection.

3.1. General Approach for Protections Atoms Identification
Starting from the description of each protection, we analyze instruction-by-instruction which are the most charac-

terizing programming elements. From each instruction, we extract the essential elements in terms of classes, methods,
attributes (Java), imported symbols (C++) and strings (Java and C++) used in the code. The result is a collection of
programming elements that together identify the protection. When found in the code, these elements are clues that
the developers deployed the protection in their app. We call these elements “protection atoms”. We applied this
approach for every protection for both Java and C++ implementations. For instance, Figure 1 (page 5) shows the
implementation for the Installer Verification protection proposed by Alexander-Bown [11].

1 private static final String PLAY_STORE_APP_ID = "com.android.vending";

2

3

4 public static boolean verifyInstaller(final Context context) {

5

6 final String installer = context.getPackageManager ()

7 .getInstallerPackageName(context.getPackageName ());

8

9 return installer != null

10 && installer.startsWith(PLAY_STORE_APP_ID);

11 }

Figure 1: Example Implementation of Installer Verification Protection

The snippet of code in Figure 1 (page 5) checks whether the end-user installed the app from the Google Play Store.
To achieve this objective, the code declares a string variable containing the package name of the Google Play Store
app, that is “com.android.vending” (line 1). Then it defines a function verifyInstaller (line 5). Given an instance
of the Context object, this function gets the package name of the installer (lines 6-7). The function tests whether the
string is empty or not (line 9). If the end-user installed the app from an APK file manually and not from an app store,
this could happen. Finally, the function checks whether the string is equal to the package name of the Google Play
Store app (line 10). If this is the case, the end-user installed the app through the Google Play Store. Otherwise, the
app comes from another source. In case the developers originally published their app only in the Google Play Store,

5

this is an indication of possible tampering attempt. It implies that someone else downloaded the app, most probably
modified it, and then published it in another app store.

From this snippet of code, we extract the relevant protection atoms that allow us to conjecture the presence of the
Installer Verification protection. Table 1 (page 6) reports these protection atoms.

Classes c1 android/content/Context

c2 android/content/pm/PackageManager

Methods
m1 android/content/Context.getPackageName

m2 android/content/Context.getPackageManager

m3 android/content/pm/PackageManager.getInstallerPackageName

Attributes
Strings s1 com.android.vending

Table 1: Set of Protection Atoms for the Installer Verification Protection at Java Level

We include the two Java classes employed in the snippet of code, Context and PackageManager. Then,
we add the methods related to these classes that are involved in the implementation of the protection, that are
Context.getPackageName, Context.getPackageManager and PackageManager.getInstallerPackageName.
For instance, the method m1 (Context.getPackageName) returns the package name of the current app. The method
m2 (Context.getPackageManager) returns an instance of the class c2 (PackageManager), while the third returns
the package name of the app that installed the current app. In our case, this package name is expected to be equal to
the string s1 (“com.android.vending”).

The baseline assumption is that, if an app contains these protection atoms, it likely implements the Installer
Verification protection. A similar argument applies to the other protections as well, both at the Java and at the
Native level. We listed all the protection atoms in Appendix B.

3.2. Boolean Formula applied on Protection Atoms

We introduce a boolean formula applied over the protection atoms to connect them through AND and OR op-
erators. This formula describes which protection atoms we have to detect to reasonably suppose that the app is
implementing the related protection. We define as “fingerprint” the combination of the protection atoms with a
boolean formula. To identify the Installer Verification protection in an app based on the protection atoms in Table 1
(page 6), we need to detect both the method m3 (PackageManager.getInstallerPackageName) and the string s1

(“com.android.vending”). These are the essential protection atoms without which it is very difficult to implement this
protection. The returning value of the method and the string have to be compared to determine whether the end-user
installed the app from the Google Play Store or not. Therefore, the fingerprint for the Installer Verification protection
at Java level is:

m3 AND s1

We report the fingerprints of other protections in Appendix C.

3.3. Handling Reflection

The developers could have hidden some protection atoms through Java Reflection to harden their protections
against attackers. Reflection is a peculiar feature in Java that allows an executing program to access variables and
methods dynamically by name. For instance, developers can replace a direct invocation to a method with a reflective
call. Figure 2 (page 7) shows the implementation for the Installer Verification protection with a reflective invocation
to the getInstallerPackageName method.

The Installer Verification protection implemented in the snippet of code in Figure 2 (page 7) is as effective as
the original one implemented in Figure 1 (page 5). However, the PackageManager.getInstallerPackageName

method is invoked through Reflection. The code declares two variables containing the class (line 2) and the method
(line 3) as strings. They are “android.content.pm.PackageManager” and “getInstallerPackageName”, respectively.
Then, the code obtains the method (lines 10-11) and invokes it (lines 13-14). Therefore, the code includes two strings

6

1 private static final String PLAY_STORE_APP_ID = "com.android.vending";

2 private static final String className = "android.content.pm.PackageManager";

3 private static final String methodName = "getInstallerPackageName";

4

5

6 public static boolean verifyInstaller(final Context context) {

7

8 Class <?> packageManagerClass = Class.forName(className);

9

10 Method installerMethod =

11 packageManagerClass.getMethod(methodName , String.class);

12

13 final String installer = installerMethod.invoke(

14 context.getPackageManager (), context.getPackageName ());

15

16 return installer != null

17 && installer.startsWith(PLAY_STORE_APP_ID);

18 }

Figure 2: Example Implementation of Installer Verification Protection with Reflection

containing (i) the fully-qualified name (FQN) of the class and (ii) the method to invoke. To make our approach more
effective, we can include such strings in our protection atoms. Note that an app can have a hybrid approach, accessing
the class traditionally and the method through reflection. In this case, we would search for the class as a symbol and
the method as a string.

A more systematic approach to solve reflective calls in Java is proposed by Li et al. [18]. Their approach is based
on constant propagation with static analysis, to compute the strings used as class and method names in reflective calls,
and the strings used as class and field names in reflective field accesses. However, considering that their approach
would be expensive, but deliver partial results when strings are obfuscated or encrypted, we opted for a faster and
cheaper alternative.

We report in Table 2 (page 7) the extended set of protection atoms.

Classes
c1 android/content/Context

c2 android/content/pm/PackageManager

Methods
m1 android/content/Context.getPackageName

m2 android/content/Context.getPackageManager

m3 android/content/pm/PackageManager.getInstallerPackageName

Attributes
s1 com.android.vending
s2 android.content.pm.PackageManagerStrings
s3 getInstallerPackageName

Table 2: Extended Set of Protection Atoms for the Installer Verification Protection at Java Level

In Table 2 (page 7), we include the strings necessary to invoke the method m3 through reflection (strings s2 and
s3). Therefore, the final fingerprint for this protection at Java level is:

(m3 OR (s2 AND (c2 OR s3))) AND (s1)

The first half of the fingerprint refers to the retrieving of the package name of the installer app. The app can obtain
this package name either directly (m3) or through reflection, with the name of the method as a string (s2) and the
class, either importing it (c2) or getting it through reflection as well (s3). The second half of the fingerprint refers to

7

the detection of the “com.android.vending” string. From now on, to avoid complications in the fingerprints, we omit
this mechanism for Reflection detection in the fingerprints.

3.4. Concerns on Fingerprint Fragility

We observed that expecting to detect all the protection atoms of the protections may be an ineffective and a too
strict requirement. Therefore, there are two concerns to discuss:

• We have to exclude the protection atoms that a developer can use for other reasons besides implementing AD and
AT protections. For instance, an app can use the Context class also for checking available permissions or cre-
ating a new object, like an android/view/View object. Moreover, an app can use the “com.android.vending”
string for in-app purchases. So, the signature should be flexible and exclude those protection atoms that might
occur spuriously also outside of protection code.

• A developer could have deployed the protection in a slightly different way by referencing to alternative im-
plementations. For example, the developers can obtain the package name of the app also through the attribute
PackageInfo.packageName or by directly embedding the value as a string variable. Moreover, there are
other app stores besides Google app store, like Samsung (“com.sec.android.app.samsungapps”) and Amazon
(“com.amazon.venezia”) app stores. Thus, we need to extend the protection atoms to achieve more compre-
hensive and effective detection results to reduce the risk of overlooking protection implementations.

We need to refine our approach to achieve better detection results. Therefore, to face this challenge and define more
accurate fingerprints, we have to test our fingerprints in an iterative process of incremental validation and refinement.

3.5. Tool Implementation

We automated the detection of the fingerprints in a tool named ATADetector (Anti-Tampering and Anti-Debugging
Detector). Figure 3 (page 9) summarizes the workflow of ATADetector. We employ the Apache Commons CLI li-
brary5 to parse input arguments. ATADetector takes as input an APK file and splits the app in the Java (.dex files)
and C++ (.so files) components. ATADetector transforms the .dex files into .jar with the nightly version (2.1) of
dex2jar6. We implemented the tool in Java on top of the ASM library [19]. This library allows parsing Java bytecode
of an Android app to extract the programming elements like classes, methods, attributes and strings.

In Java, strings are immutable and stored in the constant pool of the class where they are used. We detect string
values used in the Java bytecode by identifying their usages, i.e. the LDC (LoaD Constant) Java opcode. This opcode
is meant to take a specific constant value from the constant pool and push it to the operand stack to be used by the
subsequent opcode, for instance, to make a reflective call. The string value is provided by ASM, that resolves the
argument of the LDC opcode.

At Native level, we extract imported symbols and strings with the Linux command-line utilities nm7 and strings8,
respectively. Finally, we combine the extracted protection atoms in the fingerprints and produce a JSON report with
the org.json9 library.

4. Incremental Validation and Refinement of Protection Fingerprints

Before using the fingerprints on the large case study, we carried out an iterative process for refining and then
validating the fingerprints. The goal is to tune and adapt the fingerprints with more and more complex and complete
experimental settings. In this section, we illustrate this process by presenting the three validations steps we performed.

5https://commons.apache.org/
6https://github.com/pxb1988/dex2jar/releases
7https://linux.die.net/man/1/nm
8https://linux.die.net/man/1/strings
9https://github.com/stleary/JSON-java

8

ATADetector

.dex	files

.so	files

.jar	files

dex2jar

Native	patterns
nm,	strings

Java	Patterns

ASM

Formulas

Apache
CLI

Report

org.json
zipFile

APK	File

Figure 3: ATADetector workflow

4.1. Validation and Refinement with Toy Apps

For the first validation, we consider simple “Hello World” apps with no specific functionality. We manually
deploy the protections one by one in the apps, following the example implementations illustrated in Section 2. We
run ATADetector on these apps to verify whether it detects the protections in this most straightforward setting. To
have cleaner results, we perform the analysis both on the whole code of the app and then only on the Java class that
implements the protection. In this way, we can understand which protection atoms are significant for the detection of
the protections. There can be protection atoms often used in protections but also for other purposes and in Android
standard libraries as well. Thus, their detection would be an irrelevant contribution to the final result. In the analysis
considering the Java class that implements the protection only, we identify all the protections correctly. In the analysis
considering the whole app, we identify all the protections but also some false positives. Table 3 (page 9) summarizes
the results of the analysis on the whole app in terms of true and false positives.

Category Protection True Positive False Positive
Emulator Detection 1 0
Dynamic Analysis Framework Detection 1 0
Debugger Detection 1 1
Debuggable Status Detection 1 1

AD

Altering Debugging Memory Structure 1 0
Signature Checking 1 1
Code Integrity Checking 1 0
Installer Verification 1 0AT

SafetyNet Attestation 1 0

Table 3: First Validation on 10 “Hello World” apps

We have a false positive for the DebuggableStatusDetection protection because of the ApplicationInfo.flags
attribute. We can suppose that Android standard libraries use this attribute and therefore we can remove it from our fin-
gerprint. The same reasoning applies for the PackageInfo.signatures attribute found in the FontsContractCompat
Java class, that results in a false positive for the Signature Checking protection. At Native level, we detect the
pthread create symbol in the “string” library and not only in the Debugger Detection protection, causing another
false positive. Given these results, we refined the fingerprints in protection fingerprints by removing the protection
atoms that are used not just by protections but also by other code.

Finally, this analysis allows us to check the accuracy of ATADetector and the ASM module. Indeed, ATADetector
is able to identify every Java class, method, attribute and string value we insert in the toy apps for implementing the
protections. However, we still have to investigate more complex settings with more complex apps.

9

4.2. Validation and Refinement with Open Source Apps

To further validate protection fingerprints, we analyze a batch of 115 apps downloaded from F-Droid10, an online
repository that collects code of free and open-source apps. The availability of source code allows us to validate the
results of ATADetector manually and distinguish true from false positives more easily. We choose these 115 apps by
selecting the apps most downloaded from F-Droid. Table 4 (page 10) summarizes the results of the analysis in terms
of true and false positives.

Category Protection True Positive False Positive
Emulator Detection 3 1
Dynamic Analysis Framework Detection 0 2
Debugger Detection 9 0
Debuggable Status Detection 0 0

AD

Altering Debugging Memory Structure 0 0
Signature Checking 6 0
Code Integrity Checking 0 0
Installer Verification 1 0AT

SafetyNet Attestation 0 0

Table 4: Second Validation on 115 F-Droid APKs

Being the apps open-source, we expect to detect only a few protections. In fact, ATADetector identifies only 22
protections in 115 apps. Then, we check whether each of these 22 protections is a true positive or a false positive. Dur-
ing this process, we observe that many protections come from third-party libraries, like org.sufficientlysecure.donations.
Based on this observation, we collect the package names of these libraries to be able to filter them later.

Out of 22 cases, we identify 3 false positives only. One refers to the Emulator Detection protection. In this case,
ATADetector identifies the presence of the string “nox”, the name of an Android emulator, and the Build.DEVICE

attribute. An app can compare these two values to check whether it is running on an emulator. Unfortunately, the
app uses the “nox” string elsewhere, so it is not part of the protection. However, the app implements the Emulator
Detection protection by comparing the value of the Build.DEVICE attribute with the “generic” string. This string is
often present in the properties of Android emulators. Unfortunately, we cannot consider it a peculiar protection atom
because too commonly used. Therefore, the app implements the Emulator Detection protection, but ATADetector
does not match it properly.

The other two false positives concern the Dynamic Analysis Framework Detection. Both of them are due to the
detection of the “xposed” string. The first false positive is because the app was an Xposed module itself. The second
is because the app inserted that string in an ad-blocker list.

4.3. Validation and Refinement With Closed Source Apps

We conduct a third validation against 50 apps randomly sampled from the Google Play Store. The source code of
these apps is not accessible. Therefore, we validate the results of ATADetector by manually analyzing the code of
the apps through reverse engineering. Table 5 (page 11) summarizes the results of this third validation.

We identify 60 protections, way more than in the previous validation. For each of them, we check whether it is
a true positive or a false positive. As a result, we find that 10 of the 60 protections are false positives. As in the
previous step of validation, we manage to separate between libraries and app code, relying on the package names.
Even though obfuscated, we empirically notice that it is highly likely that an app retains the structure and the names
of the packages.

The Signature Checking protection has two false positives because of the provider.FontsContractCompat

class in Android standard libraries. This class contains the PackageInfo.signatures attribute, an essential protec-
tion atom for the detection of the protection that we cannot eliminate from the fingerprint. Therefore, we add pecu-
liar strings found in the provider.FontsContractCompat class like “No package found for authority: ”, “Found

10https://f-droid.org/

10

Category Protection True Positive False Positive
Emulator Detection 13 1
Dynamic Analysis Framework Detection 0 2
Debugger Detection 11 4
Debuggable Status Detection 0 0

AD

Altering Debugging Memory Structure 0 0
Signature Checking 12 2
Code Integrity Checking 1 0
Installer Verification 11 0AT

SafetyNet Attestation 2 0

Table 5: Third Validation on 50 Google Play Store APKs

content provider ” and “, but package was not” to the protection atoms. The idea is to use them to recognize this
false positive. In practice, if ATADetector identifies all of these three strings, it will skip one occurrence of the
PackageInfo.signatures attribute. The Emulator Detection protection has one false positive because of the de-
tection of strings related to properties of Android emulators but too commonly used in Android app. We are referring
to strings like “unknown”, “Andy” and “vbox”. Therefore, we removed them from the fingerprint.

5. Large-Scale Analysis

This section reports the process we followed for performing a large-scale analysis on Android apps along with the
final results and considerations. We first formulate five research questions to guide the definition of our experimental
settings. Then, we describe the datasets we analyzed and a set of metrics over the data. After an overview of the
procedure we followed during the analysis, we conclude the section by answering each of the research questions.

5.1. Research Questions

We formulate five research questions to guide our large-scale study:

1. RQ1: How frequently do apps use AD and AT protections?
2. RQ2: How frequently do protections integrate each other?
3. RQ3: How frequently are AD and AT protections deployed in developers’ code and in third-party libraries?
4. RQ4: How frequently are AD and AT protections implemented at Java and at Native level?
5. RQ5: What is the evolution in the adoption of AD and AT protections in apps?

The first research question aims at measuring the extent to which Android apps employ AD and AT protections.
The second research question relates to how many different protections an app implements and how they supple-

ment each other. In particular, we want to investigate how they integrate when considering pairs of protections. This
indicates how developers combine protections in their apps and what are the most popular pairings.

The third research question aims at distinguishing between protections implemented by the developers and the
ones derived from third-party libraries, measuring the extent to which developers actually protect their apps.

AD and AT protections can be deployed both at Java and Native level. While it is easier to implement Java
protections, Native ones are more difficult to bypass by attackers. The fourth research question aims to discover how
frequently developers opt for one or the other.

The last research question assesses the evolution in the usage of AD and AT protections across years.

5.2. Metrics

To answer the research questions, we define the following metrics to apply on data resulting from the large-scale
analysis:

11

• Category - Each app belongs to one or more categories of the Google Play Store (e.g., Education, Sport, Com-
munication). Each category hints to the purpose of the app and the assets the developers want to protect. It is
reasonable to suppose that the need to protect apps changes from one category to the other. We use this metric
in RQ1.

• Scope - Android apps integrate many libraries developed by third-parties. We noticed that the developers of
these libraries deploy AD and AT protections too. This metric, used in RQ3, specifies whether the protections
derive from a third-party library or not.

• Level - Protections can be implemented both at Java and Native level, each having its advantages and draw-
backs. For example, the deployment of Native protections requires more effort but leads to more effective
protections [9]. This metric, employed in RQ4, allows identifying the programming language used for the
implementation.

• Year - To give perspective to our analysis, we also consider top-category Android apps available in 2015. In this
way, it is possible to track the evolution in the adoption of AD and AT protections in the last four years. We use
this metric in RQ5.

5.3. Subjects Apps

For our large-scale analysis, we employed two different datasets of top-category Android apps. We built both of
them following the same process in 2015 and 2019. First, we crawled the Google Play Store to collect the package
names of the top Android apps for each category. The Google Play Store limits the number of top apps for each
category to 540. There were 29 categories in 2015 and 57 categories in 2019. Then, we searched for these apps in
Androzoo [20], a collection of Android apps, and we downloaded those that were available. In the end, our datasets
consist of 14,173 apps from 2015 and 23,610 from 2019. Figure 4 (page 12) shows the distribution of the collected
apps into the available categories in 2015 and 2019. To answer RQ1, RfQ2, RQ3 and RQ4, we consider only apps
from 2019. Instead, to answer RQ5, we use apps from both years 2015 and 2019.

tr
an

sp
or

ta
tio

n

ne
w

s
an

d
m

ag
az

in
es

m
us

ic
 a

nd
 a

ud
io

ap
p

w
al

lp
ap

er

m
ed

ic
al

to
ol

s

sp
or

ts

bu
si

ne
ss

bo
ok

s
an

d
re

fe
re

nc
e

w
ea

th
er

ed
uc

at
io

n

ap
p

w
id

ge
ts

so
ci

al

pe
rs

on
al

is
at

io
n

fin
an

ce

sh
op

pi
ng

co
m

m
un

ic
at

io
n

ph
ot

og
ra

ph
y

lib
ra

rie
s

an
d

de
m

o

lif
es

ty
le

tr
av

el
 a

nd
 lo

ca
l

en
te

rt
ai

nm
en

t

pr
od

uc
tiv

ity

m
ed

ia
 a

nd
 v

id
eo

he
al

th
 a

nd
 fi

tn
es

s

fa
m

ily

ga
m

e

an
dr

oi
d

w
ea

r

co
m

ic
s

N
um

be
r

Apps per Category − 2015

0

90

180

270

360

450

540

(a) Apps collected per Category in 2015

ph
ot

og
ra

ph
y

pe
rs

on
al

iz
at

io
n

ga
m

e
bo

ar
d

ar
t a

nd
 d

es
ig

n
ga

m
e

ca
rd

bo
ok

s
an

d
re

fe
re

nc
e

ga
m

e
w

or
d

lif
es

ty
le

to
ol

s
m

us
ic

 a
nd

 a
ud

io
w

ea
th

er
so

ci
al

pr
od

uc
tiv

ity
ga

m
e

tr
iv

ia
co

m
m

un
ic

at
io

n
sp

or
ts

m
ap

s
an

d
na

vi
ga

tio
n

an
dr

oi
d

w
ea

r
tr

av
el

 a
nd

 lo
ca

l
ho

us
e

an
d

ho
m

e
ga

m
e

m
us

ic
bu

si
ne

ss
vi

de
o

pl
ay

er
s

ga
m

e
pu

zz
le

ne
w

s
an

d
m

ag
az

in
es

en
te

rt
ai

nm
en

t
da

tin
g

he
al

th
 a

nd
 fi

tn
es

s
co

m
ic

s
be

au
ty

ga
m

e
ar

ca
de

fin
an

ce
ga

m
e

ed
uc

at
io

na
l

ga
m

e
ca

su
al

lib
ra

rie
s

an
d

de
m

o
pa

re
nt

in
g

fa
m

ily
 m

us
ic

vi
de

o
m

ed
ic

al
sh

op
pi

ng
ga

m
e

ca
si

no
ed

uc
at

io
n

ga
m

e
ra

ci
ng

ga
m

e
ad

ve
nt

ur
e

ga
m

e
ac

tio
n

fo
od

 a
nd

 d
rin

k
ga

m
e

ro
le

 p
la

yi
ng

ga
m

e
si

m
ul

at
io

n
ev

en
ts

fa
m

ily
 e

du
ca

tio
n

fa
m

ily
 c

re
at

e
au

to
 a

nd
 v

eh
ic

le
s

ga
m

e
sp

or
ts

fa
m

ily
fa

m
ily

 p
re

te
nd

fa
m

ily
 a

ct
io

n
fa

m
ily

 b
ra

in
ga

m
es

ga
m

e
st

ra
te

gy

N
um

be
r

Apps per Category − 2019

0

90

180

270

360

450

540

(b) Apps collected per Category in 2019

Figure 4: Apps Collected per Category in 2015 (4a) and 2019 (4b)

5.4. Analysis Procedure

We launched ATADetector on the subjects apps in a High-Performance Computing (HPC) cluster available in
Fondazione Bruno Kessler (FBK). In this way, we could run several threads in parallel to complete the analysis faster.
On average, ATADetector analyzes one app per minute. The overall analysis took around two weeks.

ATADetector produces two reports for each analyzed app, i.e. a long and a short version of the results of the
analysis. The longest one is more detailed and it contains the protection atoms described in Section 3 along with
the number of times ATADetector detected each protection atom in the app. The shorter one is more general and it
reports, for each fingerprint, whether ATADetector identified the related protection in the app. In Figure 5 (page 13),

12

we present an example of a short report. The short report lists the protections and states whether ATADetecor iden-
tified the protection, indicated with the number 1, or not, indicated with the number 0. For each protection, the short
report specifies whether it is at Java or at Native level. For the former, the short report furtherly specifies whether
ATADetector identified the protection in third-party libraries (Java 1) or in the app developers’ code (Java 2).

1 {

2 ‘ S i g n a t u r e C h e c k i n g J a v a ’ : 0 ,
3 ‘ S i g n a t u r e C h e c k i n g J a v a 1 ’ : 1 ,
4 ‘ SignatureChecking NATIVE ’ : 0 ,
5 ‘ C o d e I n t e g r i t y C h e c k i n g J a v a ’ : 0 ,
6 ‘ I n s t a l l e r V e r i f i c a t i o n J a v a ’ : 0 ,
7 ‘ I n s t a l l e r V e r i f i c a t i o n J a v a 1 ’ : 1
8 ‘ S a f e t y N e t A t t e s t a t i o n J a v a ’ : 0 ,
9 ‘ E m u l a t o r D e t e c t i o n J a v a ’ : 0 ,

10 ‘ E m u l a t o r D e t e c t i o n J a v a 1 ’ : 1 ,
11 ‘ Emula torDetec t ion NATIVE ’ : 0 ,
12 ‘ D y n a m i c A n a l y s i s F r a m e w o r k D e t e c t i o n J a v a ’ : 0 ,
13 ‘ DynamicAnalysisFrameworkDetect ion NATIVE ’ : 0 ,
14 ‘ D e b u g g e r D e t e c t i o n J a v a ’ : 0 ,
15 ‘ D e b u g g e r D e t e c t i o n J a v a 1 ’ : 1 ,
16 ‘ DebuggerDetect ion NATIVE ’ : 0 ,
17 ‘ D e b u g g a b l e S t a t u s D e t e c t i o n J a v a ’ : 0 ,
18 ‘ Debuggab leS ta tusDe tec t ion NATIVE ’ : 0 ,
19 ‘ Al te r ingDebuggerMemorySt ruc ture NATIVE ’ : 0 ,
20 }

Figure 5: Short Report Produced by ATADetector for com.cashback.card

We present the analysis results as barplots, commenting on the trends that are evident in the graphs. Moreover,
when comparing trends for protections RQ3 (developers’ code Vs libraries code), RQ4 (Java Vs Native) and RQ5
(2015 Vs 2019), we need to assess whether any observed difference is statistically significant and not due to random
variation. To analyze whether this difference is significant, we use the Fisher’s exact test [21], more accurate than the
χ2 test, which is another possible alternative to test the presence of differences in categorical data. In this statistical
test, we consider a 95% significance level, i.e. we accept a 5% probability of committing a Type I error.

5.5. RQ1 - Adoption of AD and AT Protections
Since the categories do not contain the same number of apps, we measure the relative percentage and not the

absolute number. Figure 6 (page 13) shows the results of this aggregation.

fo
od

 a
nd

 d
rin

k
so

ci
al

da
tin

g
sh

op
pi

ng
ev

en
ts

tr
av

el
 a

nd
 lo

ca
l

ne
w

s
an

d
m

ag
az

in
es

he
al

th
 a

nd
 fi

tn
es

s
ph

ot
og

ra
ph

y
ga

m
e

ca
su

al
ga

m
e

pu
zz

le
sp

or
ts

vi
de

o
pl

ay
er

s
ga

m
e

w
or

d
pe

rs
on

al
iz

at
io

n
ga

m
e

ar
ca

de
co

m
m

un
ic

at
io

n
lif

es
ty

le
ed

uc
at

io
n

ga
m

e
ac

tio
n

au
to

 a
nd

 v
eh

ic
le

s
ga

m
e

ro
le

 p
la

yi
ng

ga
m

e
tr

iv
ia

en
te

rt
ai

nm
en

t
w

ea
th

er
be

au
ty

ga
m

e
ca

si
no

ga
m

e
si

m
ul

at
io

n
bu

si
ne

ss
fin

an
ce

pr
od

uc
tiv

ity
fa

m
ily

av
er

ag
e

ga
m

e
ca

rd
m

us
ic

 a
nd

 a
ud

io
to

ol
s

m
ap

s
an

d
na

vi
ga

tio
n

pa
re

nt
in

g
ga

m
e

ra
ci

ng
ga

m
e

bo
ar

d
fa

m
ily

 b
ra

in
ga

m
es

bo
ok

s
an

d
re

fe
re

nc
e

ho
us

e
an

d
ho

m
e

m
ed

ic
al

ar
t a

nd
 d

es
ig

n
ga

m
e

ad
ve

nt
ur

e
co

m
ic

s
fa

m
ily

 p
re

te
nd

an
dr

oi
d

w
ea

r
fa

m
ily

 e
du

ca
tio

n
ga

m
e

ed
uc

at
io

na
l

fa
m

ily
 c

re
at

e
ga

m
e

m
us

ic
ga

m
e

sp
or

ts
ga

m
e

st
ra

te
gy

fa
m

ily
 a

ct
io

n
lib

ra
rie

s
an

d
de

m
o

fa
m

ily
 m

us
ic

vi
de

o

P
er

ce
nt

ag
e

0
10
20
30
40
50
60
70
80
90

100

(a) Percentage of Apps Implementing at Least One AD Protection

ga
m

e
si

m
ul

at
io

n
ga

m
e

ac
tio

n
ga

m
e

ca
si

no
ga

m
e

ra
ci

ng
ga

m
e

pu
zz

le
ga

m
e

ca
su

al
be

au
ty

da
tin

g
ga

m
e

tr
iv

ia
ga

m
e

m
us

ic
ga

m
e

w
or

d
ga

m
e

ad
ve

nt
ur

e
ar

t a
nd

 d
es

ig
n

ga
m

e
ro

le
 p

la
yi

ng
pe

rs
on

al
iz

at
io

n
ga

m
e

st
ra

te
gy

co
m

ic
s

ga
m

e
ar

ca
de

so
ci

al
ga

m
e

sp
or

ts
ph

ot
og

ra
ph

y
ga

m
e

ca
rd

lif
es

ty
le

au
to

 a
nd

 v
eh

ic
le

s
fa

m
ily

 p
re

te
nd

fa
m

ily
 c

re
at

e
ga

m
e

ed
uc

at
io

na
l

fa
m

ily
pa

re
nt

in
g

fa
m

ily
 a

ct
io

n
he

al
th

 a
nd

 fi
tn

es
s

fo
od

 a
nd

 d
rin

k
ga

m
e

bo
ar

d
en

te
rt

ai
nm

en
t

fa
m

ily
 e

du
ca

tio
n

fa
m

ily
 b

ra
in

ga
m

es
av

er
ag

e
ne

w
s

an
d

m
ag

az
in

es
sh

op
pi

ng
vi

de
o

pl
ay

er
s

sp
or

ts
ho

us
e

an
d

ho
m

e
m

us
ic

 a
nd

 a
ud

io
fa

m
ily

 m
us

ic
vi

de
o

an
dr

oi
d

w
ea

r
ev

en
ts

w
ea

th
er

ed
uc

at
io

n
to

ol
s

tr
av

el
 a

nd
 lo

ca
l

co
m

m
un

ic
at

io
n

m
ap

s
an

d
na

vi
ga

tio
n

pr
od

uc
tiv

ity
bu

si
ne

ss
fin

an
ce

bo
ok

s
an

d
re

fe
re

nc
e

m
ed

ic
al

lib
ra

rie
s

an
d

de
m

o

P
er

ce
nt

ag
e

0
10
20
30
40
50
60
70
80
90

100

(b) Percentage of Apps Implementing at Least One AT Protection

Figure 6: Percentage of Apps Implementing at Least One AD (6a) and AT (6b) Protection

On average (red columns), 90% of top category Android apps implement AT protections and 58.69% of apps
implementing AD protections. The most protected categories are Games, Dating and Social while the less protected
are related to Family and Libraries. Surprisingly, also the Medical category is among the ones less protected. We can

13

infer that developers are more inclined to deploy AT rather than AD protections and that the vast majority of apps is
equipped with AD and AT protections.

Furthermore, we examine how many times ATADetector identified the protections singularly. For each short
report related to an app, we count the detected protections summing these occurrences in Figure 7 (page 14)

S
ig

na
tu

re
 C

he
ck

in
g

In
st

al
le

r
V

er
ifi

ca
tio

n

E
m

ul
at

or
 D

et
ec

tio
n

D
eb

ug
ge

r
D

et
ec

tio
n

S
af

et
yN

et
 A

tte
st

at
io

n

D
yn

am
ic

 A
na

ly
si

s
F

ra
m

ew
or

k
D

et
ec

tio
n

D
eb

ug
ga

bl
e

S
ta

tu
s

D
et

ec
tio

n

C
od

e
In

te
gr

ity
 C

he
ck

in
g

A
lte

rin
g

D
eb

ug
ge

r
M

em
or

y
S

tr
uc

tu
re

N
um

be
r

of
 A

pp
s

0

5,000

10,000

15,000

20,000

25,000

Figure 7: Number of Apps Adopting the Related Protections

The most deployed protection is Signature Checking with 88.80% Android apps implementing it. Then, there
are Installer Verification (74.42%) and Emulator Detection (49.83%) protections. The least deployed protections are
Debuggagle Status Detection (2.02%), Code Integrity Checking (1.00%) and Altering Debugger Memory Structure,
never detected in the analyzed apps. The last is a particularly complicated protection to be implemented at Native
level. Therefore, we can suppose that (i) few developers deployed it and (ii) they took care of hiding it (e.g., through
Obfuscation).

5.6. RQ2 - Integration of Multiple Protections
We now examine the overall number of protections an app implements. Note that we do not differentiate by

category or type of protection (i.e. AD or AT). Therefore, we count the detected protections reported in the short
versions of the reports and sum them in Figure 8 (page 15).

There are 1,769 apps out of 23,610 apps (7.49%) that implement no protections, while the vast majority usually
implements two (5,630 or 23.84%), three (5,653 or 23.94%) or four protections (6,575 or 27.84%). Apps implement
three protections on average. From the statistics, we can infer that developers are likely to deploy more than one
protection.

We also analyzed how each protection integrates with others. For each pair of protections, regardless of the scope
and level, we counted the occurrences ATADetector detected it. Table 6 (page 16) summarizes the results of this
analysis. Each cell contains the number of times ATADetector identified the two protections together.

The most popular pair is Signature Checking and Installer Verification protections with 17,329 apps implementing
both of them. The second is Signature Checking with Emulator Detection protections with 11,203. Indeed, these
three protections are also the ones most employed by developers. In general, Table 6 (page 16) accurately reflects the
statistics presented in Figure 7 (page 14).

5.7. RQ3 - Protections in Developers’ Code and Third-Party Libraries
The results that we presented so far suggests that AD and AT protections are quite popular among Android apps,

given that most of the apps deploy at least one protection. Their developers employ both AD and AT protections

14

0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 A

pp
s

Number of Protections

0

2,000

4,000

6,000

8,000

Figure 8: Apps Divided per Number of Protections Implemented

and even more protections at the same time. However, we want to investigate whether the protections come from the
developers of the apps or derive from third-party libraries. We collect the names of the packages of many of the most
used third-party libraries. Moreover, we search online for similar libraries and collect their package names too. In
total, we collect 83 library packages. The complete list is reported in Appendix D.

We empirically observed that apps are likely to retain the names of the Java packages even though the apps are
obfuscated. Wang Yan et al. [22] found that ProGuard11 is the most widely used tool to obfuscate Android apps, while
Wermke et al. [23] found that the vast majority of Android app developers fails to correctly configure ProGuard. Since
developers have to configure ProGuard to obfuscate third-party libraries explicitly, we can suppose that these are the
reasons why we observed many not-obfuscated Java package names. Being so, we can distinguish between third-
party libraries and developers’ code in the app. Consequently, we can understand where ATADetector identified the
protections. Figure 9 (page 17) reports the results of this analysis.

Only 28% (17,979 over 63,858 identified protections) of the protections come from the developers, while the
remaining 72% (45,879 over 63,858 identified protections) derive from third-party libraries. Unexpectedly, we notice
that most of the detected protections derive from third-party libraries.

Figure 9 (page 17) shows how many protections are implemented on each app directly in the developers’ code
(blue bars) or in the libraries code (red bars). Most of the Android apps (13,867 over 23,610) contain no protection
in developers’ code. Among the remaining, 4,588 apps contain just one protection and 2,705 apps contain two
protections in the developers’ code. The trend seems different for libraries code. In fact, most the apps (i.e. 6210 apps)
contain two protections in the libraries code, while 5,589 and 4,577 apps contain, respectively, 1 and 3 protections in
the libraries code. Only 3,830 apps contain no protection in the libraries code.

To assess if the difference in the observed trends is statistically significant, we use the Fisher’s exact test, and the
resulting p-value is <0.001. Considering that the p-value is below 5%, we can conclude that the difference in the
observed distribution of protections in developers code and library code is statistically significant and not just due to
random errors.

We also investigate which kind of protections third-party libraries implement and report the results in Figure 10
(page 18). By comparing these results with the results of RQ1 reported in Figure 7 (page 14), we can speculate that
there is no substantial difference between the protections chosen by app developers and libraries developers. Indeed,
the most deployed protection is still Signature Checking with 65.45% of Android apps including third-party libraries

11https://www.guardsquare.com/en/products/proguard

15

C
od

e
In

te
gr

ity
C

he
ck

in
g

In
st

al
le

rV
er

ifi
ca

tio
n

Sa
fe

ty
N

et
A

tte
st

at
io

n

E
m

ul
at

or
D

et
ec

tio
n

D
yn

am
ic

A
na

ly
si

s
Fr

am
ew

or
k

D
et

ec
tio

n

D
eb

ug
ge

rD
et

ec
tio

n

D
eb

ug
ga

bl
e

St
at

us
D

et
ec

tio
n

A
lte

ri
ng

D
eb

ug
ge

rM
em

or
y

St
ru

ct
ur

e

Signature Checking 153 17,329 2,628 11,203 796 8,979 474 0

Code Integrity Checking 131 7 102 6 78 1 0

Installer Verification 2,413 10,698 759 8,026 451 0

SafetyNet Attestation 1,065 99 597 94 0

Emulator Detection 679 7,159 464 0

Dynamic Analysis Framework Detection 524 199 0

Debugger Detection 229 0

Debuggable Status Detection 0

Table 6: Count of how many times two protections are deployed together

that implement it, followed again by Installer Verification (51.29%). The only difference is that third-party libraries
developers prefer to implement Debugger Detection (32.45%) rather than Emulator Detection (31.67%) protections.

Concerning protections derived from third-party libraries, the vast majority of apps (19,780 over 23,610 apps)
employs libraries with at least one protection. Unfortunately, these protections do not cover the logic of the app but
only the functioning of the library itself. Therefore, their effectiveness reduces to that scope only.

5.8. RQ4 - Protections deployed at Java and Native level

Another important aspect is the ratio between protections implemented at Java and Native levels. We examine
it by considering the number of protections identified at these two different levels. Figure 11 (page 19) reports the
results of this comparison.

Considering the protections implemented at Java level (blue bars), we see many apps with 2, 3 and 4 protections,
while very few apps have no Java protection. Conversely, if we consider protections implemented at Native level
(red bars), we see that the majority of the apps have no Native protection. Only a few apps have 1 or more protections
at the native level. According to the result of the Fisher’s exact test, this difference in the trends of Java and Native

protections is statistically significant (p-value<0.05).
We observe that 99% of the identified protections are implemented in Java. Only 2.2% (521 over 23,610 apps)

of top-category Android apps implement Native protections, and in general no more than one. We can infer that
there are more protections deployed at the Java level rather than at the Native one, implying that developers quite
never consider implementing protections in C++. Then, the trend of Java protections is practically equal to the one
presented in Figure 8 (page 15). There can be several explanations for this lack of Native protections:

• It is more difficult to implement protections at the Native level than at the Java one [9].

16

0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 A

pp
s

Number of Protections

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000
Developers Code Only
Third−Party Libraries Only

Figure 9: Apps Divided per Number of Protections Implemented in the Developers Code and Third-Party Libraries Code

• While every app contains Java code, not all apps include Native code.

• Empirically, we noticed that it is easier to find on the internet snippets of code for Java protections rather than
Native ones.

5.9. RQ5 - Evolution in Adoption of AD and AT Protections

This last research question compares statistics about identified protections between the datasets of apps from
2015 and 2019. The results are reported in Figure 12 (page 20). Results are in percentage, because of the different
number of apps in the two datasets of this analysis. According to Figure 12 (page 20), apps in 2019 seem to deploy
more protections than apps from 2015. In fact, the percentage of adoption increases from 80.50% to 88.80% for the
Signature Checking protection, from 71.46% to 74.42% for the Installer Verification protection and from 41.21% to
49.83% for the Emulator Detection protection. The other protections follow a similar pattern, with the only exception
of SafetyNet Attestation, whose adoption rate decreases from 12.41% to 11.13% and the Code Integrity Checking, that
decreases from 0.90% to 0.69%.

We applied the Fisher’s exact test on the data in Figure 12. The test result confirms that the different trends between
2015 and 2019 are statistically significant.

6. Discussion

In this section, we discuss technical limitations and the threats to validity.

6.1. Technical Limitations

ATADetector is a static analysis tool and Java Reflection, even though mitigated by detecting FQN, will always
be a limitation. Through Reflection, developers can screen API invocations in the code of their apps. Besides, there
are methods through which developers can furtherly hinder the analysis of their apps. For instance, String Encryption
consists in encrypting constant strings to make them unreadable by static analysis tools. Then, a routine decrypts the
strings at runtime when needed. ATADetector relies on strings for both the detection of FQN to mitigate Reflection
and as protection atoms themselves. Therefore, String Encryption threatens the effectiveness of the detection of our
tool as well since it makes statically reading the value of these strings nearly impossible.

17

S
ig

na
tu

re
 C

he
ck

in
g

In
st

al
le

r
V

er
ifi

ca
tio

n

D
eb

ug
ge

r
D

et
ec

tio
n

E
m

ul
at

or
 D

et
ec

tio
n

S
af

et
yN

et
 A

tte
st

at
io

n

D
yn

am
ic

 A
na

ly
si

s
F

ra
m

ew
or

k
D

et
ec

tio
n

D
eb

ug
ga

bl
e

S
ta

tu
s

D
et

ec
tio

n

C
od

e
In

te
gr

ity
 C

he
ck

in
g

A
lte

rin
g

D
eb

ug
ge

r
M

em
or

y
S

tr
uc

tu
re

N
um

be
r

of
 A

pp
s

0

5,000

10,000

15,000

20,000

25,000

Figure 10: Number of Apps Containing the Related Protections in Third-Party Libraries Only

In our large-scale study, we considered apps written in Java only. Still, Java is not the only option available
to Android developers. For instance, Cordova12 is an open-source framework for apps development by Apache. It
exploits standard web technologies like HTML5, CSS3 and JavaScript for cross-platform deployment. Therefore,
developers can publish Cordova apps both on iOS and Android. Even though our approach may be valid also for
apps written with web technologies, our fingerprints are not. However, we can argue that the vast majority of Android
developers implement their apps with Java.

6.2. Threats to Validity
Construct Validity: There are three reasons for which the statistics we produced may not be accurate:

• Our fingerprints may not cover all possible ways in which developers can implement AT or AD protections.
Despite we adopted an incremental refinement and validation of our fingerprints to limit this threat, there may
be other programming elements we did not consider that developers can use to implement their protection.
Therefore, we could still have missed some protections.

• Third-party libraries detection is based on a list that may not contain the package names of all third-party
libraries available to Android developers. Therefore, this measurement could not be extremely accurate. Also, if
the developers obfuscated the package names of the libraries, we would misclassify some protections. However,
note that solving these issues would only lower even more the percentage of protections found in the apps
developers’ code. Detecting third-party libraries with more precision would categorize more protections as
belonging to the libraries themselves. Therefore, the percentage of protections coming from the developers is
anyway less than 28%.

• In general, it is known that code hardening (e.g., reflection, string encryption, obfuscation) causes problems to
static analysis. Therefore, ATADetector may have missed some protections because concealed by the devel-
opers. However, ATADetector found more protection in 2019 than in 2015. This suggests that, even though
apps from 2019 may have been hardened, our approach works well on modern and obfuscated apps.

External Validity: Our analysis considers apps from one single app store only, i.e. the Google Play Store. There-
fore, our analysis could be biased and our results might not extend in general to apps coming from other stores. To
limit this threat, we considered apps from all the categories to have a wide variety of cases, and from different years.

12https://cordova.apache.org/

18

0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 A

pp
s

Number of Protections

0

5,000

10,000

15,000

20,000

25,000
Java Level Only
Native Level Only

Figure 11: Apps Divided per Number of Protections Implemented at Java and Native Level

7. Related Work

In the literature, numerous researchers focused on the security analysis of Android apps. Concerning protections
against malicious reverse engineering, some works presented novel approaches and schemes. Others described large-
scale studies to assess several properties of Android apps related to security and reverse engineering.

7.1. New Protections for Android Apps

Piao et al. [5] proposed a server-based approach to provide both encryption and AT protection. A server stores
the main functionalities of the app encrypted together with a tamper detection protection. When needed, the code is
downloaded and decrypted with a one-time secret key. Similarly, Viticchie et al. [24] automatized the deployment
of AT protections using a Reactive Remote Attestation technique. This technique consists in splitting the code of the
app and moving the core routines server-side. Before accessing these routines, the app has to prove its integrity to the
server. In a successful scenario, the server executes the core routines and returns the results to the app. Otherwise, the
server does not run the code to prevent the tampered app from continuing its execution. Divilar is a tool developed by
Zhou et al. [6] for re-encoding an Android app with a random instruction set over dex bytecode as an AT protection.
The app executes with a specialized virtual instruction interpreter, designed to be integrated with the Dalvik virtual
machine to reduce the performance overhead. Wan et al. [25] developed an AD protection by building check points
for integrity verification. They analyzed open-source tools for hookings methods and APIs to identify such check
points. If one of these tools hooks a method to debug an app, it will alter the value of the check points related to
the method. Their approach can detect this modification and then raise a warning. Abrath et al. [26] investigated
the weaknesses in AD protection through self-debugging. They argue that attackers can easily bypass this approach
with little effort. Therefore, they propose a new technique in which portions of the code of the app are moved in the
debugger itself, hindering the attackers in the reverse engineering process. They also provided an implementation with
a prototype and validated their technique with penetration testers. Jing et al. [27] proposed Morpheus, a framework for
Android emulator detection. Their approach consists of analyzing Android system artefacts observable by Android
apps, and then generate heuristics to detect Android emulators automatically. Such heuristics were tested against
both Android emulators and real devices, obtaining high accuracy. Other works propose synergy between protections.
Since hooking APIs is an efficient way to bypass AD protections, Kyeonghwan et al. [28] combined a simple AD
protection (i.e. checking the value of the debuggable flag in the Android manifest) with the detection of API method
hooking attacks. Vasileiadis [29] collected both AD and AT protections in a comprehensive approach into evaluating

19

S
ig

na
tu

re
 C

he
ck

in
g

In
st

al
le

r
V

er
ifi

ca
tio

n

E
m

ul
at

or
 D

et
ec

tio
n

D
eb

ug
ge

r
D

et
ec

tio
n

S
af

et
yN

et
 A

tte
st

at
io

n

D
yn

am
ic

 A
na

ly
si

s
F

ra
m

ew
or

k
D

et
ec

tio
n

D
eb

ug
ga

bl
e

S
ta

tu
s

D
et

ec
tio

n

C
od

e
In

te
gr

ity
 C

he
ck

in
g

A
lte

rin
g

D
eb

ug
ge

r
M

em
or

y
S

tr
uc

tu
re

P
er

ce
nt

ag
e

of
 A

pp
s

Protections

0
10
20
30
40
50
60
70
80
90

100
2015
2019

Figure 12: Percentage of All Apps in 2015 and 2019 Adopting the Related Protection

the state of an Android app and its running environment. The collection includes, inter alia, signature verification,
debugger and emulator detection and remote attestation.

7.2. Large-Scale Studies on Android Apps
Ghafari et al. [30] analyzed thousands of app from the Google Play store to detect pre-defined patterns of coding

errors that lead to security vulnerabilities. First, they defined a list of bad programming habits, the resulting vulner-
ability and a possible solution or mitigation. Then, they implemented the detection of such errors in a static analysis
tool. They asserted that more than 90% of the examined Android apps contain at least one potential vulnerability.
Shan et al. [31] focused on the categorization of what they defined as “self-hiding behaviours” in Android apps.
These techniques allow apps to conceal their activities from end-users. They provided a list of such behaviours along
with a description and an example implementation. From this code, they extracted unique patterns and designed a
static analysis algorithm able to detect them. One of their findings is that legitimate apps employ these behaviours
as much as malicious ones. Gao et al. [32] analyzed trends in misuse of Android’s cryptographic-related APIs. A
misuse is defined as a wrong or insecure configuration of such APIs, like the use of outdated algorithms (e.g., MD5),
the hardcoding of salt values and the storing of sensitive data as (immutable) Java strings. The initial assumption
is that app updates across an app lineage are likely to fix these misuses. The authors employed an already existing
static analysis tool in a large-scale study on 40 thousands of apps lineages. Counterintuitively, the finding is that
misuses of crypto-APIs are not likely to be fixed by app developers. Habchi et al. [33] performed a large-scale study
to analyze bad programming practices, which they call “code smells”, on Android apps. Their goal is to understand
whether these smells come from inexperienced developers only. The authors defined and described 8 bad program-
ming practices and build on top of them a static analysis tool. Their finding is that smells are not the responsibility of
an isolated group of developers, and there are no distinct groups of code smell introducers and removers. Developers
who introduce and remove code smells are mostly the same.

Even though with a different purpose, these works proposed an approach similar to ours. They identified specific
patterns and exploited static analysis to detect them in Android apps. However, other works specifically targeted the
adoption of protections against malicious reverse engineering in Android apps, either to assess their implementation
rate or to conduct derivative studies.

7.3. Large-Scale Study on the Adoption of Protections in Android Apps
Wermke et al. [23] investigated the extent to which Obfuscation is used in Android apps. They exploited static

analysis considering identifiers like package names, classes, methods and fields. They aimed at detecting Obfuscation

20

by Proguard13. They tested their algorithm on manually protected open source apps from F-Droid14. Finally, they
launched a large-scale analysis on more than a million Android apps from the Google Play store, finding that only
24.92% of apps are obfuscated bu the developers. Kaur et al. [34] tackled the task of Obfuscation identification from
a different and novel approach, exploiting spatial analysis. This technique investigates patterns present in images
calculated directly from binary files. The authors created grey-scale images from Android APKs and then calculated
first- and second-order statistics like the Shannon Entropy and Chi-Square. They were able to achieve a significant
accuracy (nearly 90%) in fingerprinting Obfuscation tools together with their configuration. Wang Yan et al. [22]
exploited Machine Learning techniques to study and classify Obfuscation in Android apps. Their purpose was to
distinguish whether an app is obfuscated or not and what tool the developers employed. They employed several tools
to create different obfuscated versions of open-source apps downloaded from the F-Droid repository. After defining
and tuning their classifiers, they performed a Large-Scale analysis of Google Play apps to study the percentage of
obfuscated apps and the most frequent tools. They managed to identify the configuration of the tools with more than
90% accuracy. Wang Pei et al. [35] studied the deployment of Obfuscation techniques on the Apple Store apps. Their
purpose was to discover to what extent iOS developers employ this protection. For each app, they assessed the amount
of protected code discerning third-party libraries. Eventually, they tested the resilience of the Obfuscation techniques
on a set of apps. Despite an increasing trend of the usage of such protection, they found that many apps are still
vulnerable to low-effort reverse engineering.

The literature presents several studies on protections against malicious reverse engineering and large-scale studies
on Android apps. As we discussed, many researchers proposed an approach similar to ours. First, they identified
peculiar patterns, analogue to our protection atoms. Then, they tuned the patterns on toy apps. Once automatized the
process, they started a large-scale study on apps. However, regarding protections against attackers, all of these studies
focused on Obfuscation identification only. They did not consider other kinds of protections against malicious reverse
engineering. To the best of our knowledge, we are the first to assess the adoption rate of AD and AT protections in
Android apps.

8. Future Work

Several interesting areas can be investigated to enhance the large-scale analysis we presented:

• ATADetector does not consider the context in the detection of the protections. It identifies each protection
atom separately and then it consults the fingerprint. Instead, it would be interesting to introduce a context in the
extraction of protection atoms. We could track a particular protection atom to see when and how the developers
used it. For instance, we could check whether the package name of an app store and the value returned by the
getinstallerpackagename API are the parameters of a .equals method. In this way, we would obtain very
accurate detections by removing many false positives

• Since not strictly related to AD or AT, we excluded some protections from our analysis, like the Root Detection
protection. Indeed, this protection focuses on the status of the smartphone rather than on eventual tampering
on the app. However, it would be interesting to investigate the adoption of this protection also. Similarly, there
may be other protections worth considering.

• ATADetector detects the protections by identifying the protection atoms through static analysis. We chose
to exploit static analysis since it was the natural automation process for our extraction of protection atoms.
However, we can automatize the detection with other techniques and check whether they perform better or not.
Indeed, there are different approaches for the actual implementation:

* Machine Learning: the protection atoms we defined can work as features for training the model. The
challenge is to produce a training set large enough to train the model.

13https://www.guardsquare.com/en/products/proguard
14https://f-droid.org/

21

* Dynamic Analysis: this approach would overcome Reflection and String Encryption. However, an app
could activate certain protections under certain particular conditions only. For instance, it could run AD
protections after the login or AT protections when a free trial of eventual premium features expires. There-
fore, it would be difficult to tell whether there are no protections or the analysis was not thorough enough.

* Spatial Analysis: Kaur et al. [34] employed this interesting kind of analysis for Obfuscation detection in
Android apps. However, we have to understand whether the protection atoms we are interested in are too
small to be accurately detected in the generated images or not.

9. Conclusion

In this paper, we described the first large-scale study about the detection of AD and AT protections in Android apps.
Our purpose is to understand the extent to which Android app developers employ these protections. We identified and
described nine different protections against malicious reverse engineering. We collected example implementations
and extracted peculiar protection atoms, both at Java and Native levels, producing and refining the fingerprints. We
developed a tool, ATADetector, to automatize the detection task. Before launching the large-scale analysis, we tuned
the fingerprints with three incremental validation steps to achieve more accurate detection rates. Finally, we analyzed
37,783 Android apps.

We defined five research questions and four metrics. We analyzed the percentage of protected apps by category
and how frequents protections integrate each other. Then, we investigated whether the detected protections came from
third-party libraries or not. We compared the ratio of protections implemented at Java and Native levels and then
assessed the evolution of the adoption of the protections between 2015 and 2019.

At first, the results seemed to indicate that a high percentage of apps deploy AD and AT protections. Almost
all apps implement AT protections and around two out of three implementing AD protections. Furthermore, an
app contains 3 protections on average. However, we discovered that only 28% of all protections come from apps
developers, while the remaining derive from third-party libraries. Therefore, the vast majority of protections do not
provide any defence against attacks to the logic of the app. We also found that the ratio between Java and Native

level protections is of 99 to 1. This implies that developers implement almost all protections in Java that attackers
can more easily reverse and bypass respect to Native protections. Furthermore, we observed that apps from 2019
generally employ more protections than apps from 2015.

Attackers analyze and tamper Android apps to unlock premium features, insert malware and redirect ads revenue.
Even though it is not possible to definitively block malicious reverse engineering, app developers can hinder the
process by securing the code through the use of AD and AT protections. Our findings show that Android apps are not
as protected as they could be. This result is even more serious since we considered top-category apps.

The final reports and aggregated results can be found, together with ATADetector and other material, in our
GitHub repository [36].

References

[1] L. Li, T. Bissyandé, J. Klein, Rebooting research on detecting repackaged android apps: Literature review and benchmark, IEEE Transactions
on Software Engineering PP (2019) 1–1. doi:10.1109/TSE.2019.2901679.

[2] J. Sommerlad, Spotify cracks down on premium pirates streaming for free (2018).
URL independent.co.uk/life-style/gadgets-and-tech/news/spotify-premium-piracy-crackdown-apps-bypass-

restrictions-accounts-deactivated-music-streaming-a8241936.html

[3] ustwo games, Twitter status (2015).
URL twitter.com/ustwogames/status/552136427904184320

[4] M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Coppens, B. De Sutter, Understanding the behaviour of hackers while
performing attack tasks in a professional setting and in a public challenge, Empirical Software Engineering 24 (1) (2019) 240–286. doi:

10.1007/s10664-018-9625-6.
URL https://doi.org/10.1007/s10664-018-9625-6

[5] Y. Piao, J. Jung, J. Hyun Yi, Server-based code obfuscation scheme for apk tamper detection, Security and Communication Networks 9.
doi:10.1002/sec.936.

[6] W. Zhou, Z. Wang, Y. Zhou, X. Jiang, Divilar: Diversifying intermediate language for anti-repackaging on android platform, 2014, pp.
199–210. doi:10.1145/2557547.2557558.

22

http://dx.doi.org/10.1109/TSE.2019.2901679
independent.co.uk/life-style/gadgets-and-tech/news/spotify-premium-piracy-crackdown-apps-bypass-restrictions-accounts-deactivated-music-streaming-a8241936.html
independent.co.uk/life-style/gadgets-and-tech/news/spotify-premium-piracy-crackdown-apps-bypass-restrictions-accounts-deactivated-music-streaming-a8241936.html
independent.co.uk/life-style/gadgets-and-tech/news/spotify-premium-piracy-crackdown-apps-bypass-restrictions-accounts-deactivated-music-streaming-a8241936.html
twitter.com/ustwogames/status/552136427904184320
https://doi.org/10.1007/s10664-018-9625-6
https://doi.org/10.1007/s10664-018-9625-6
http://dx.doi.org/10.1007/s10664-018-9625-6
http://dx.doi.org/10.1007/s10664-018-9625-6
https://doi.org/10.1007/s10664-018-9625-6
http://dx.doi.org/10.1002/sec.936
http://dx.doi.org/10.1145/2557547.2557558

[7] T. Vidas, N. Christin, Evading android runtime analysis via sandbox detection, in: Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’14, ACM, New York, NY, USA, 2014, pp. 447–458. doi:10.1145/2590296.

2590325.
URL http://doi.acm.org/10.1145/2590296.2590325

[8] G. Developers, Android studio documentation and guidelines (2018).
URL developer.android.com/docs/

[9] T. O. Foundation, Owasp mobile security testing guide (2018).
URL https://mobile-security.gitbook.io/mobile-security-testing-guide/

[10] R. Balebako, A. Marsh, J. Lin, J. Hong, L. Cranor, The privacy and security behaviors of smartphone app developers, 2014. doi:10.14722/
usec.2014.23006.

[11] S. Alexander-Bown, Android security: Adding tampering detection to your app.
URL airpair.com/android/posts/adding-tampering-detection-to-your-android-app

[12] D. Kozhevin, Native signature verification for android with example (2018).
URL github.com/DimaKoz/stunning-signature

[13] C. Fenton, Android emulator detection (2016).
URL https://github.com/CalebFenton/AndroidEmulatorDetect

[14] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth, Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones, ACM Trans. Comput. Syst. 32 (2) (2014) 5:1–5:29. doi:10.1145/2619091.
URL http://doi.acm.org/10.1145/2619091

[15] W. Zhou, Y. Zhou, X. Jiang, P. Ning, Detecting repackaged smartphone applications in third-party android marketplaces, in: Proceedings of
the Second ACM Conference on Data and Application Security and Privacy, CODASPY ’12, ACM, New York, NY, USA, 2012, pp. 317–326.
doi:10.1145/2133601.2133640.
URL http://doi.acm.org/10.1145/2133601.2133640

[16] G. Developers, Protect against security threats with safetynet (2018).
URL developer.android.com/training/safetynet

[17] G. Developers, Security tips (2018).
URL https://developer.android.com/training/articles/security-tips/

[18] L. Li, T. F. Bissyandé, D. Octeau, J. Klein, DroidRA: taming reflection to support whole-program analysis of Android apps, in: Proceedings
of the 25th International Symposium on Software Testing and Analysis - ISSTA 2016, ACM Press, Saarbrücken, Germany, 2016, pp.
318–329. doi:10.1145/2931037.2931044.
URL http://dl.acm.org/citation.cfm?doid=2931037.2931044

[19] E. Bruneton, R. Lenglet, T. Coupaye, Asm: A code manipulation tool to implement adaptable systems, in: In Adaptable and extensible
component systems, 2002.

[20] L. Li, J. Gao, M. Hurier, P. Kong, T. Bissyandé, A. Bartel, J. Klein, Y. Le Traon, Androzoo++: Collecting millions of android apps and their
metadata for the research community.

[21] J. L. Devore, Probability and Statistics for Engineering and the Sciences, Duxbury Press; 7 edition, 2007.
[22] Y. Wang, A. Rountev, Who changed you? obfuscator identification for android, 2017, pp. 154–164. doi:10.1109/MOBILESoft.2017.18.
[23] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, S. Fahl, A large scale investigation of obfuscation use in google play, 2018, pp.

222–235. doi:10.1145/3274694.3274726.
[24] A. Viticchié, C. Basile, A. Avancini, M. Ceccato, B. Abrath, B. Coppens, Reactive attestation: Automatic detection and reaction to software

tampering attacks, in: Proceedings of the 2016 ACM Workshop on Software PROtection, SPRO ’16, ACM, New York, NY, USA, 2016, pp.
73–84. doi:10.1145/2995306.2995315.
URL http://doi.acm.org/10.1145/2995306.2995315

[25] J. Wan, M. Zulkernine, C. Liem, A dynamic app anti-debugging approach on android art runtime, 2018, pp. 560–567. doi:10.1109/DASC/
PiCom/DataCom/CyberSciTec.2018.00105.

[26] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, B. De Sutter, Tightly-coupled self-debugging software protection, in: Proceedings of the
6th Workshop on Software Security, Protection, and Reverse Engineering, SSPREW ’16, ACM, New York, NY, USA, 2016, pp. 7:1–7:10.
doi:10.1145/3015135.3015142.
URL http://doi.acm.org/10.1145/3015135.3015142

[27] Y. Jing, Z. Zhao, G.-J. Ahn, H. Hu, Morpheus: automatically generating heuristics to detect Android emulators, in: Proceedings of the 30th
Annual Computer Security Applications Conference on - ACSAC ’14, ACM Press, New Orleans, Louisiana, 2014, pp. 216–225. doi:

10.1145/2664243.2664250.
URL http://dl.acm.org/citation.cfm?doid=2664243.2664250

[28] K. Lim, Y. Jeong, S. je Cho, M. Park, S. Han, An Android Application Protection Scheme against Dynamic Reverse Engineering Attacks,
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 7 (3) (2016) 40–52. doi:10.22667/JOWUA.

2016.09.31.040.
URL https://doi.org/10.22667/JOWUA.2016.09.31.040

[29] L. Vasileiadis, Remote runtime detection of tampering and of dynamic analysis attempts for android apps (July 2019).
URL http://essay.utwente.nl/79200/

[30] M. Ghafari, P. Gadient, O. Nierstrasz, Security smells in android, 2017, pp. 121–130. doi:10.1109/SCAM.2017.24.
[31] Z. Shan, I. Neamtiu, R. Samuel, Self-hiding behavior in android apps: Detection and characterization, 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE) (2018) 728–739.
[32] J. Gao, P. Kong, L. Li, T. F. Bissyande, J. Klein, Negative Results on Mining Crypto-API Usage Rules in Android Apps, in: 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR), IEEE, Montreal, QC, Canada, 2019, pp. 388–398. doi:10.1109/
MSR.2019.00065.

23

http://doi.acm.org/10.1145/2590296.2590325
http://dx.doi.org/10.1145/2590296.2590325
http://dx.doi.org/10.1145/2590296.2590325
http://doi.acm.org/10.1145/2590296.2590325
developer.android.com/docs/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
http://dx.doi.org/10.14722/usec.2014.23006
http://dx.doi.org/10.14722/usec.2014.23006
airpair.com/android/posts/adding-tampering-detection-to-your-android-app
github.com/DimaKoz/stunning-signature
https://github.com/CalebFenton/AndroidEmulatorDetect
https://github.com/CalebFenton/AndroidEmulatorDetect
http://doi.acm.org/10.1145/2619091
http://doi.acm.org/10.1145/2619091
http://dx.doi.org/10.1145/2619091
http://doi.acm.org/10.1145/2619091
http://doi.acm.org/10.1145/2133601.2133640
http://dx.doi.org/10.1145/2133601.2133640
http://doi.acm.org/10.1145/2133601.2133640
developer.android.com/training/safetynet
https://developer.android.com/training/articles/security-tips/
https://developer.android.com/training/articles/security-tips/
http://dl.acm.org/citation.cfm?doid=2931037.2931044
http://dx.doi.org/10.1145/2931037.2931044
http://dl.acm.org/citation.cfm?doid=2931037.2931044
http://dx.doi.org/10.1109/MOBILESoft.2017.18
http://dx.doi.org/10.1145/3274694.3274726
http://doi.acm.org/10.1145/2995306.2995315
http://doi.acm.org/10.1145/2995306.2995315
http://dx.doi.org/10.1145/2995306.2995315
http://doi.acm.org/10.1145/2995306.2995315
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00105
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00105
http://doi.acm.org/10.1145/3015135.3015142
http://dx.doi.org/10.1145/3015135.3015142
http://doi.acm.org/10.1145/3015135.3015142
http://dl.acm.org/citation.cfm?doid=2664243.2664250
http://dx.doi.org/10.1145/2664243.2664250
http://dx.doi.org/10.1145/2664243.2664250
http://dl.acm.org/citation.cfm?doid=2664243.2664250
https://doi.org/10.22667/JOWUA.2016.09.31.040
http://dx.doi.org/10.22667/JOWUA.2016.09.31.040
http://dx.doi.org/10.22667/JOWUA.2016.09.31.040
https://doi.org/10.22667/JOWUA.2016.09.31.040
http://essay.utwente.nl/79200/
http://essay.utwente.nl/79200/
http://dx.doi.org/10.1109/SCAM.2017.24
https://ieeexplore.ieee.org/document/8816738/
http://dx.doi.org/10.1109/MSR.2019.00065
http://dx.doi.org/10.1109/MSR.2019.00065

URL https://ieeexplore.ieee.org/document/8816738/

[33] S. Habchi, N. Moha, R. Rouvoy, The Rise of Android Code Smells: Who is to Blame?, in: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), IEEE, Montreal, QC, Canada, 2019, pp. 445–456. doi:10.1109/MSR.2019.00071.
URL https://ieeexplore.ieee.org/document/8816779/

[34] R. Kaur, Y. Ning, H. Gonzalez, N. Stakhanova, Unmasking android obfuscation tools using spatial analysis, 2018, pp. 1–10. doi:10.1109/
PST.2018.8514207.

[35] P. Wang, Q. Bao, L. Wang, S. Wang, Z. Chen, T. Wei, D. Wu, Software protection on the go: A large-scale empirical study on mobile app
obfuscation, in: Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, ACM, New York, NY, USA, 2018, pp.
26–36. doi:10.1145/3180155.3180169.
URL http://doi.acm.org/10.1145/3180155.3180169

[36] C. M. Berlato S., Atadetector (2018).
URL https://github.com/StefanoBerlato/ATADetector

[37] T. Strazzere, anti-emulator (2013).
URL https://github.com/strazzere/anti-emulator

[38] B. Mueller, The jiu-jitsu of detecting frida (2017).
URL http://www.vantagepoint.sg/blog/90-the-jiu-jitsu-of-detecting-frida

[39] B. Mueller, The jiu-jitsu of detecting frida (2017).
URL http://www.vantagepoint.sg/blog/89-more-android-anti-debugging-fun

[40] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, D. Song, Juxtapp: A scalable system for detecting code reuse among android applications, Vol.
7591, 2012, pp. 62–81. doi:10.1007/978-3-642-37300-8_4.

24

https://ieeexplore.ieee.org/document/8816738/
https://ieeexplore.ieee.org/document/8816779/
http://dx.doi.org/10.1109/MSR.2019.00071
https://ieeexplore.ieee.org/document/8816779/
http://dx.doi.org/10.1109/PST.2018.8514207
http://dx.doi.org/10.1109/PST.2018.8514207
http://doi.acm.org/10.1145/3180155.3180169
http://doi.acm.org/10.1145/3180155.3180169
http://dx.doi.org/10.1145/3180155.3180169
http://doi.acm.org/10.1145/3180155.3180169
https://github.com/StefanoBerlato/ATADetector
https://github.com/StefanoBerlato/ATADetector
https://github.com/strazzere/anti-emulator
https://github.com/strazzere/anti-emulator
http://www.vantagepoint.sg/blog/90-the-jiu-jitsu-of-detecting-frida
http://www.vantagepoint.sg/blog/90-the-jiu-jitsu-of-detecting-frida
http://www.vantagepoint.sg/blog/89-more-android-anti-debugging-fun
http://www.vantagepoint.sg/blog/89-more-android-anti-debugging-fun
http://dx.doi.org/10.1007/978-3-642-37300-8_4

Appendix A. Protections Implementation Collection

This appendix contains the example implementations for the protections we identified. First, we divide between
AD and AT protections. Then, for each protection, we describe the implementation and report the Java and the
Native code, when present. Additional information can be found in the related references.

Appendix A.1. AD Protections

• Emulator Detection (Java implementation in Figure A.13, page 25): an app can obtain the properties of the
smartphone in several ways. it can access the android.os.Properties class through Reflection [11] (lines
22-37 Java), query the Build class (lines 2-19 Java) [9] or execute the getprop command (lines 40-44
Java) [37], both at Java and at Native level. It can also check the presence of emulator related files [13] (lines
47-51 Java).

1 / / check p r o p e r t i e s from B u i l d c l a s s
2 p r i v a t e boolean h a s E m u l a t o r B u i l d P r o p () {
3 re turn B u i l d . FINGERPRINT . s t a r t s W i t h (” g e n e r i c ”)
4 | | B u i l d . FINGERPRINT . s t a r t s W i t h (” unknown ”)
5 | | B u i l d .MODEL. c o n t a i n s (” g o o g l e s d k ”)
6 | | B u i l d .MODEL. c o n t a i n s (” Emula to r ”)
7 | | B u i l d .MODEL. c o n t a i n s (” Android SDK b u i l t f o r x86 ”)
8 | | B u i l d .MANUFACTURER. c o n t a i n s (” Genymotion ”)
9 | | (B u i l d .BRAND. s t a r t s W i t h (” g e n e r i c ”) && B u i l d . DEVICE . s t a r t s W i t h (” g e n e r i c ”))

10 | | B u i l d .PRODUCT. c o n t a i n s (” g o o g l e s d k ”)
11 | | B u i l d .HARDWARE. c o n t a i n s (” g o l d f i s h ”)
12 | | B u i l d .HARDWARE. c o n t a i n s (” r an c hu ”)
13 | | B u i l d .BOARD. c o n t a i n s (” unknown ”)
14 | | B u i l d . ID . c o n t a i n s (”FRF91”)
15 | | B u i l d .MANUFACTURER. c o n t a i n s (” unknown ”)
16 | | B u i l d . SERIAL == n u l l
17 | | B u i l d . TAGS . c o n t a i n s (” t e s t −keys ”)
18 | | B u i l d . USER . c o n t a i n s (” a n d r o i d −b u i l d ”) ;
19 }

20

21 / / method t o g e t p r o p e r t i e s o f P r o p e r t i e s c l a s s t h r o u g h R e f l e c t i o n
22 p r i v a t e s t a t i c S t r i n g g e t P r o p (C o n t e x t c tx , S t r i n g propName) throws E x c e p t i o n {

23 C l a s s L o a d e r c l = c t x . g e t C l a s s L o a d e r () ;
24 Class <?> c l a s s = c l . l o a d C l a s s (” a n d r o i d . os . p r o p e r t i e s ”) ;
25 Method g e t P r o p = c l a s s . ge tMethod (” g e t ” , S t r i n g . c l a s s) ;
26 O b j e c t [] params = { propName } ;
27 re turn (S t r i n g) g e t P r o p . i nvo ke (c l a s s , params) ;
28 }

29

30 / / check p r o p e r t i e s from t h e P r o p e r t i e s c l a s s
31 p r i v a t e boolean hasQemuBui ldProps () {
32 re turn ” g o l d f i s h ” . e q u a l s (g e t P r o p (c o n t e x t , ” ro . ha rdware ”))
33 | | ” r a nc hu ” . e q u a l s (g e t P r o p (c o n t e x t , ” ro . ha rdware ”))
34 | | ” g e n e r i c ” . e q u a l s (g e t P r o p (c o n t e x t , ” ro . p r o d u c t . d e v i c e ”))
35 | | ” 1 ” . e q u a l s (g e t P r o p (c o n t e x t , ” ro . k e r n e l . qemu”))
36 | | ” 0 ” . e q u a l s (g e t P r o p (c o n t e x t , ” ro . s e c u r e ”)) ;
37 }

38

39 / / check p r o p e r t i e s from t h e g e t P r o p command
40 p r i v a t e S t r i n g g e t S y s t e m P r o p e r t y (S t r i n g proper tyName) throws E x c e p t i o n {

41 P r o c e s s g e t P r o p P r o c e s s = Runtime . ge tRun t ime () . exec (” g e t p r o p ” + proper tyName) ;
42 B u f f e r e d R e a d e r osRes = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (g e t P r o p P r o c e s s . g e t I n p u t S t r e a m ())) ;
43 re turn osRes . r e a d L i n e () ;
44 }

45

46 / / check t h e p r e s e n c e o f p i p e s r e l a t e d t o e m u l a t o r s
47 p r i v a t e s t a t i c boolean hasQemuFi le () {
48 re turn new F i l e (” / i n i t . g o l d f i s h . r c ”) . e x i s t s ()
49 | | new F i l e (” / s y s / q e m u t r a c e ”) . e x i s t s ()
50 | | new F i l e (” / sys tem / b i n / qemud”) . e x i s t s () ;
51 }

Figure A.13: Java Example Implementation of Emulator Detection Protection

25

• Dynamic Analysis Framework Detection (Java implementation in Figure A.14, page 26, Native implemen-
tation in Figure A.15, page 27): The simplest way to detect a dynamic analysis framework is to scan package
names, files or binaries to look for resources known to be components of these frameworks. An app can throw
an exception and check whether Xposed is present in the stack trace [9, 11] (lines 2-27 Java). It can also iterate
through the list of running processes to check whether the Frida server is running [38] (lines 30-45 Java). At
Native level, an app can ping the TCP port 27047, used by the Frida server as default, to see whether it is
open [38] (lines 1-11 Native). Also, it can also check if Frida-related libraries are mapped into memory [38]
(lines 13-28 Native).

1 / / Xposed d e t e c t i o n t h r o u g h e x c e p t i o n s t a c k s t r a c e
2 t r y {

3 throw new E x c e p t i o n () ;
4 }

5 catch (E x c e p t i o n e) {
6 i n t z y g o t e I n i t C a l l C o u n t = 0 ;
7 f o r (S t a c k T r a c e E l e m e n t s t a c k T r a c e E l e m e n t : e . g e t S t a c k T r a c e ()) {

8 i f (s t a c k T r a c e E l e m e n t . ge tClassName () . e q u a l s (”com . a n d r o i d . i n t e r n a l . os . Z y g o t e I n i t ”)) {
9 z y g o t e I n i t C a l l C o u n t ++;

10 i f (z y g o t e I n i t C a l l C o u n t == 2) {
11 Log . wt f (” HookDetec t ion ” , ” S u b s t r a t e i s a c t i v e on t h e d e v i c e . ”) ;
12 }

13 }

14 i f (s t a c k T r a c e E l e m e n t . ge tClassName () . e q u a l s (”com . s a u r i k . s u b s t r a t e . MS$2”) &&
15 s t a c k T r a c e E l e m e n t . getMethodName () . e q u a l s (” invoked ”)) {
16 Log . wt f (” HookDetec t ion ” , ”A method on t h e s t a c k t r a c e has been hooked u s i n g S u b s t r a t e . ”) ;
17 }

18 i f (s t a c k T r a c e E l e m e n t . ge tClassName () . e q u a l s (” de . robv . a n d r o i d . xposed . XposedBridge ”) &&
19 s t a c k T r a c e E l e m e n t . getMethodName () . e q u a l s (” main ”)) {
20 Log . wt f (” HookDetec t ion ” , ” Xposed i s a c t i v e on t h e d e v i c e . ”) ;
21 }

22 i f (s t a c k T r a c e E l e m e n t . ge tClassName () . e q u a l s (” de . robv . a n d r o i d . xposed . XposedBridge ”) &&
23 s t a c k T r a c e E l e m e n t . getMethodName () . e q u a l s (” handleHookedMethod ”)) {
24 Log . wt f (” HookDetec t ion ” , ”A method on t h e s t a c k t r a c e has been hooked u s i n g Xposed . ”) ;
25 }

26 }

27 }

28

29 / / check i f F r i d a s e r v e r i s r u n n i n g
30 p u b l i c boolean c h e c k R u n n i n g P r o c e s s e s () {
31 boolean r e t u r n V a l u e = f a l s e ;
32 L i s t <R u n n i n g S e r v i c e I n f o > l i s t = manager . g e t R u n n i n g S e r v i c e s (3 0 0) ;
33 i f (l i s t != n u l l) {
34 f o r (i n t i =0; i < l i s t . s i z e () ;++ i) {
35 i f (l i s t . g e t (i) . p r o c e s s . c o n t a i n s (” f r i d a s e r v e r ”)) {
36 r e t u r n V a l u e = t rue ;
37 }

38 }

39 }

40 re turn r e t u r n V a l u e ;
41 }

Figure A.14: Java Implementation of Dynamic Analysis Framework Detection Protection

• Debugger Detection (Java implementation in Figure A.16, page 27, Native implementation in Figure A.17,
page 28): an app can discover the presence of a JDWP debugger through the Debug.isDebuggerConnected

API (lines 1-3 Java). The app can invoke the same API through the gDvm structure at Native level (lines 1-6
Native) [9, 11]. An app can detect the GDB debugger by checking if there are processes attached to the process
of the app by reading the TracerPid value in the /proc/self/status file (lines 5-22 Java) [37]. Beside reactive
protections, there are also preventive ones. For instance, an app can attach a mock debugger process to itself
so to prevent a real debugger process from functioning properly (lines 8-30 Native) [39]. For what concerns a
GDB debugger, remember that the best protection is to prevent it from attaching to the process of the app.

• Debuggable Status Detection (Java implementation in Figure A.18, page 28): the attackers, to allow JDWP de-
bugging, have to alter the value of the debuggable flag in the manifest of the app. In this way, the Android oper-

26

1 b o o l e a n i s f r i d a s e r v e r l i s t e n i n g () {
2 struct s o c k a d d r i n sa ;
3 memset(&sa , 0 , sizeof (s a)) ;
4 sa . s i n f a m i l y = AF INET ;
5 sa . s i n p o r t = h t o n s (2 7 0 4 7) ;
6 i n e t a t o n ("127.0.0.1" , &(sa . s i n a d d r)) ;
7 int sock = s o c k e t (AF INET , SOCK STREAM , 0) ;
8 if (c o n n e c t (sock , (struct s o c k a d d r *)& sa , sizeof sa) != −1) {
9 /* Frida server detected */

10 }

11 }

12

13 b o o l e a n i s f r i d a l i b r a r y l o a d e d () {
14 char l i n e [5 1 2] ;
15 FILE* fp ;
16 fp = fopen ("/proc/self/maps" , "r") ;
17 if (fp) {
18 while (f g e t s (l i n e , 512 , fp)) {
19 if (s t r s t r (l i n e , "frida")) {
20 /* Evil library is loaded */
21 }

22 }

23 f c l o s e (fp) ;
24 }

25 else {
26 /* Error opening /proc/self/maps. If this happens, something is off. */
27 }

28 }

Figure A.15: Native Implementation of Dynamic Analysis Framework Detection Protection

1 p u b l i c boolean isJDWPDebuggerConnected () {
2 re turn Debug . i sD e bu g ge r Co n ne c t e d () ;
3 }

4

5 p u b l i c s t a t i c boolean isGDBDebuggerConnected () throws E x c e p t i o n {

6 B u f f e r e d R e a d e r r e a d e r = n u l l ;
7 r e a d e r = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (new F i l e I n p u t S t r e a m (” / p roc / s e l f / s t a t u s ”)) , 1 0 0 0) ;
8 S t r i n g l i n e ;
9 whi le ((l i n e = r e a d e r . r e a d L i n e ()) != n u l l) {

10 i f (l i n e . l e n g t h () > t r a c e r p i d . l e n g t h ()) {

11 i f (l i n e . s u b s t r i n g (0 , t r a c e r p i d . l e n g t h ()) . e q u a l s I g n o r e C a s e (t r a c e r p i d)) {
12 i f (I n t e g e r . decode (l i n e . s u b s t r i n g (t r a c e r p i d . l e n g t h () + 1) . t r i m ()) > 0) {
13 re turn true ;
14 }

15 break ;
16 }

17 }

18 }

19 r e a d e r . c l o s e () ;
20 re turn f a l s e ;
21 }

22 }

Figure A.16: Java Implementation of Debugger Detection Protection

ating system starts an extra thread for handling the JDWP protocol. An app can access and check the value of this
flag either through the ApplicationInfo.FLAG DEBUGGABLE (lines 2-4 Java) or the BuildConfig.DEBUG

(lines 5-7 Java) attribute [11].

• Altering Debugging Memory Structure (Native implementation in Figure A.19, page 29): an app can tamper
with the variables related to the JDWP debugger to hinder its correct functioning. In Dalvik, the app can modify
the pointers of the DvmGlobals structure thorugh the global variable gDvm (lines 1-3 Native) [9]. In ART,
the app can do the same by e by overwriting JDWP method pointers (lines 5-40 Native) [9]. For instance,

27

1 b o o l e a n i s d e b u g g e r c o n n e c t e d {

2 if (gDvm . debugge rConnec t ed | | gDvm . d e b u g g e r A c t i v e) {
3 return JNI TRUE ;
4 }

5 return JNI FALSE ;
6 }

7

8 c h i l d p i d = f o r k () ;
9 if (c h i l d p i d == 0) {

10 int pp id = g e t p p i d () ;
11 int s t a t u s ;
12 if (p t r a c e (PTRACE ATTACH, ppid , NULL, NULL) == 0) {
13 w a i t p i d (ppid , &s t a t u s , 0) ;
14 p t r a c e (PTRACE CONT , ppid , NULL, NULL) ;
15 while (w a i t p i d (ppid , &s t a t u s , 0)) {
16 if (WIFSTOPPED(s t a t u s)) {
17 p t r a c e (PTRACE CONT , ppid , NULL, NULL) ;
18 }

19 else {
20 // Process has exited
21 e x i t (0) ;
22 }

23 }

24 }

25 }

26 else {
27 p t h r e a d t t ;
28 /* Start the monitoring thread */
29 p t h r e a d c r e a t e (& t , NULL, m o n i t o r p i d , (void *)NULL) ;
30 }

Figure A.17: Native Implementation of Debugger Detection Protection

1 p u b l i c boolean i s D e b u g g a b l e () {
2 i f ((c o n t e x t . g e t A p p l i c a t i o n I n f o () . f l a g s & A p p l i c a t i o n I n f o . FLAG DEBUGGABLE) != 0) {
3 re turn true ;
4 }

5 e l s e i f (B u i l d C o n f i g .DEBUG) {
6 re turn true ;
7 }

8 e l s e {

9 re turn f a l s e ;
10 }

11 }

Figure A.18: Java Implementation of Debuggable Status Detection Protection

an app can overwrite the address of the function jdwpAdbState::ProcessIncoming with the address of
JdwpAdbState::Shutdown. In this way, the debugger will disconnect immediately when a new process is
coming.

Appendix A.2. AT Protections

• Signature Checking (Java implementation in Figure A.20, page 29, Native implementation in Figure A.21,
page 30): A tampered app does not have the same digital signature anymore. Therefore, an app can com-
pare the current signature of the APK file with the original one. The app can implement this protection both
at Java and Native level. In the former case, the app can obtain the current signature through dedicated
APIs using the PackageManager.GET SIGNATURES and the PackageInfo.signatures (API < 28) or the
PackageManager.GET SIGNING CERTIFICATES and the PackageInfo.signingInfo (API > 28) APIs
(lines 1-16 Java) [11]. In the latter case, the app can extract and parse the CERT.RSA file [12].

• Code Integrity Checking (Java implementation in Figure A.22, page 30): Similarly to the Signature Checking

28

1 void c r a s h O n I n i t () {
2 gDvm . m e t h D a l v i k D d m c S e r v e r d i s p a t c h = NULL;
3 }

4

5 // Vtable structure. Just to make messing around with it more intuitive
6 struct VT JdwpAdbState {

7 unsigned long x ;
8 unsigned long y ;
9 void * J d w p S o c k e t S t a t e d e s t r u c t o r ;

10 void * J d w p S o c k e t S t a t e d e s t r u c t o r ;
11 void * Accept ;
12 void * showmanyc ;
13 void * ShutDown ;
14 void * P r o c e s s I n c o m i n g ;
15 } ;
16

17 void tamperJDWPDebugger () {
18 void* l i b = d l op en ("libart.so" , RTLD NOW) ;
19 if (l i b == NULL) {
20 l o g ("Error loading libart.so") ;
21 d l e r r o r () ;
22 }

23 else {
24 struct VT JdwpAdbState * v t a b l e = (struct VT JdwpAdbState *) ;
25 dlsym (l i b , "_ZTVN3art4JDWP12JdwpAdbStateE") ;
26 if (v t a b l e == 0) {
27 l o g ("Couldn’t resolve symbol ’_ZTVN3art4JDWP12JdwpAdbStateE’.\n") ;
28 }

29 else {
30 l o g ("Vtable for JdwpAdbState at: %08x\n" , v t a b l e) ;
31 // Let the fun begin!
32 unsigned long p a g e s i z e = s y s c o n f (SC PAGE SIZE) ;
33 unsigned long page = (unsigned long) v t a b l e & ˜ (p a g e s i z e −1) ;
34 m p r o t e c t ((void *) page , p a g e s i z e , PROT READ | PROT WRITE) ;
35 v t a b l e −>P r o c e s s I n c o m i n g = v t a b l e −>ShutDown ;
36 // Reset permissions & flush cache
37 m p r o t e c t ((void *) page , p a g e s i z e , PROT READ) ;
38 }

39 }

40 }

Figure A.19: Native Implementation of Altering Debugging Memory Structure Protection

1 p u b l i c s t a t i c f i n a l S t r i n g o r i g i n a l S i g n a t u r e = ” 478yYkKAQF+KST8y4ATKvHkYibo=” ;
2

3 p u b l i c s t a t i c i n t c h e c k A p p S i g n a t u r e (C o n t e x t c o n t e x t) throws E x c e p t i o n {

4 P a c k a g e I n f o p a c k a g e I n f o = c o n t e x t . ge tPackageManager () . g e t P a c k a g e I n f o (
5 c o n t e x t . getPackageName () , PackageManager . GET SIGNATURES) ;
6 f o r (S i g n a t u r e s i g n a t u r e : p a c k a g e I n f o . s i g n a t u r e s) {
7 byte [] s i g n a t u r e B y t e s = s i g n a t u r e . t o B y t e A r r a y () ;
8 MessageDiges t md = MessageDiges t . g e t I n s t a n c e (”SHA”) ;
9 md . u p d a t e (s i g n a t u r e . t o B y t e A r r a y ()) ;

10 f i n a l S t r i n g c u r r e n t S i g n a t u r e = Base64 . e n c o d e T o S t r i n g (md . d i g e s t () , Base64 . DEFAULT) ;
11 i f (o r i g i n a l S i g n a t u r e . e q u a l s (c u r r e n t S i g n a t u r e)) {
12 re turn true ;
13 }

14 }

15 re turn f a l s e ;
16 }

Figure A.20: Java Implementation of Signature Checking Protection

protection, an app can compute a digest value on a resource or file and then compare it with the expected one.
Therefore, an app could access and hash the file containing the Java code (i.e. the .dex file) and check whether

29

1 j b y t e A r r a y g e t S i g n a t u r e F r o m N a t i v e () {
2 NSV LOGI ("pathHelperGetPath starts\n") ;
3 char * p a t h = p a t h H e l p e r G e t P a t h () ;
4 NSV LOGI ("pathHelperGetPath finishes\n") ;
5 if (! p a t h) {
6 return NULL;
7 }

8 NSV LOGI ("pathHelperGetPath result[%s]\n" , p a t h) ;
9 NSV LOGI ("unzipHelperGetCertificateDetails starts\n") ;

10 s i z e t l e n i n = 0 ;
11 s i z e t l e n o u t = 0 ;
12 unsigned char * c o n t e n t = u n z i p H e l p e r G e t C e r t i f i c a t e D e t a i l s (pa th , &l e n i n) ;
13 NSV LOGI ("unzipHelperGetCertificateDetails finishes\n") ;
14 if (! c o n t e n t) {
15 f r e e (p a t h) ;
16 return NULL;
17 }

18 NSV LOGI ("pkcs7HelperGetSignature starts\n") ;
19 unsigned char * r e s = p k c s 7 H e l p e r G e t S i g n a t u r e (c o n t e n t , l e n i n , &l e n o u t) ;
20 NSV LOGI ("pkcs7HelperGetSignature finishes\n") ;
21 j b y t e A r r a y j b A r r a y = NULL;
22 if (NULL != r e s | | l e n o u t != 0) {
23 j b A r r a y = (* env)−>NewByteArray (env , l e n o u t) ;
24 (* env)−>S e t B y t e A r r a y R e g i o n (env , jbAr ray , 0 , l e n o u t , (j b y t e *) r e s) ;
25 }

26 f r e e (c o n t e n t) ;
27 f r e e (p a t h) ;
28 p k c s 7 H e l p e r F r e e () ;
29 return j b A r r a y ;
30 }

Figure A.21: Native Implementation of Signature Checking Protection

this value is the original one or not. App developers can use standard libraries like “Zipentry” 15 to automatically
obtain useful values like the CRC code (lines 1-7 Java) [9].

1 p u b l i c s t a t i c f i n a l S t r i n g o r ig ina lCRC = ” 9Guy6DJ6+gh5uSJ5sJK67=” ;
2

3 p u b l i c boolean checkCRC (long storedCRC) {
4 Z i p F i l e z f = new Z i p F i l e (Main . MyContext . ge tPackageCodePa th ()) ;
5 Z i p E n t r y ze = z f . g e t E n t r y (‘ ‘ c l a s s e s . dex ’ ’) ;
6 re turn (ze . getCRC () == or ig ina lCRC) ;
7 }

Figure A.22: Java Implementation of Code Integrity Checking Protection

• Installer Verification (Java implementation in Figure A.23, page 31): Usually, attackers publish tampered
and repackaged apps in third-party app stores [40, 15]. When installing an app, the Android operating sys-
tem keeps track of the source of the APK file. This value is available through the PackageManager method
getInstallerPackageName. In particular, this returns the package name of the app through which the end-
user installed the current app. An app can obtain this value and check whether it is consistent with the app stores
where the developers published the app (lines 1-6 Java) [11]. Suppose the developers published their app only
in the Google Play Store. Therefore, end-users should have installed the app through the Play Store app that has
“com.android.vending” as the package name. If the value returned by the getInstallerPackageName API
is “cm.aptoide.pt”, the app was installed from Aptoide16, an independent Android app store. Therefore, some
attackers likely tampered the app.

15https://developer.android.com/reference/java/util/zip/ZipEntry
16https://www.aptoide.com/en/home

30

1 p r i v a t e s t a t i c f i n a l S t r i n g playStoreAppPackageName = ”com . a n d r o i d . vend ing ” ;
2

3 p u b l i c s t a t i c boolean v e r i f y I n s t a l l e r (f i n a l C o n t e x t c o n t e x t) {
4 f i n a l S t r i n g i n s t a l l e r = c o n t e x t . ge tPackageManager () .
5 g e t I n s t a l l e r P a c k a g e N a m e (c o n t e x t . getPackageName ()) ;
6 re turn playStoreAppPackageName . e q u a l s (i n s t a l l e r) ;
7 }

Figure A.23: Java Implementation of Installer Verification Protection

• SafetyNet Attestation: An app can invoke SafetyNet to verify the integrity of the smartphone in which it is
running. SafetyNet can provide information on alterations such as rooting or bootloader unlocking. Usually,
attackers exploit these features to install dynamic analysis frameworks. Furthermore, SafetyNet can also
provide information about the app that invoked the service, like the signature. This information can be used to
perform integrity checks on the app itself. The example implementation for this protection is rather long and we
do not report it here. Therefore, we leave the reference for further insights17. Instead, we report a sample output
JSON in Figure A.24 (page 31). The ctsProfileMatch and basicIntegrity fields provide spot checks for device
integrity. The apkPackageName and the apkDigestSha256 fields give indications on the integrity of the package
of the app. The apkCertificateDigestSha256 field contains information on the integrity of the certificate of the
app.

1 {

2 ‘ nonce ’ : ‘ R2Rra24fVm5xa2Mg ’ ,
3 ‘ t imestampMs ’ : 9860437986543 ,
4 ‘ apkPackageName ’ : ‘ c o m . p a c k a g e . n a m e . o f . r e q u e s t i n g . a p p ’ ,
5 ‘ a p k C e r t i f i c a t e D i g e s t S h a 2 5 6 ’ : [‘ base64 SHA−256 hash o f t h e c e r t i f i c a t e used t o s i g n t h e APK ’] ,
6 ‘ apkDiges tSha256 ’ : [‘ base64 SHA−256 hash o f t h e APK ’] ,
7 ‘ c t s P r o f i l e M a t c h ’ : true ,
8 ‘ b a s i c I n t e g r i t y ’ : true
9 }

Figure ??: Sample Output of the Invocation of the SafetyNet service

17https://github.com/googlesamples/android-play-safetynet

31

Appendix B. Protection Atoms

This appendix contains the protection atoms extracted from the protections. For each protection, we report the
protection atoms in a table. We divide the Java protection atoms into sets of classes, methods, attributes and strings
and the Native protection atoms into sets of imported symbols and strings. Note that not every protection has
both Java and Native protection atoms. Note also that we extended the protection atoms with code with similar
functionalities of the example implementation.

Appendix B.1. AD Protections

• Emulator Detection - Java protection atoms in Table B.7, page 32, Native protection atoms in Figure B.8,
page 33

c1 java/lang/Class c2 java/lang/reflect/Method

c3 android/os/Build c4 android/os/Process

c5 java/lang/Runtime c6 java/lang/SystemClasses
c7 android/app/ActivityManager

m1 android/app/ActivityManager.isUserAMonkey m2 java/lang/Class.forName

m3 java/lang/Class.getMethod m4 java/lang/reflect/Method.invokeMethods
m5 java/lang/Runtime.getRuntime m6 java/lang/Runtime.exec

a1 android/os/Build.HARDWARE a2 android/os/Build.BOARD

a3 android/os/Build.BRAND a4 android/os/Build.DEVICE

a5 android/os/Build.FINGERPRINT a6 android/os/Build.MODEL
Attributes

a7 android/os/Build.MANUFACTURER a8 android/os/Build.PRODUCT

s1 android.os.SystemProperties s2 getprop
s3 ro.hardware s4 ro.boot.hardware
s5 ro.kernel.androidboot.hardware s6 ro.product.board
s7 ro.board.platform s8 ro.product.brand
s9 ro.product.device s10 ro.cm.device
s11 ro.bootimage.build.fingerprint s12 ro.build.fingerprint
s13 ro.product.manufacturer s14 ro.product.model
s15 goldfish s16 ranchu
s17 vbox86 s18 ttVM x86
s19 unknown s20 generic
s21 nox s22 FRF91
s23 google sdk s24 generic x86
s25 generic x86 64 s26 Andy
s27 Droid4X s28 vbox
s29 Genymotion s30 ro.kernel.qemu
s31 qemud s32 qemu.sf.lcd density
s33 qemu.hw.mainkeys s34 qemu.sf.fake camera
s35 /dev/socket/qemud s36 /dev/qemu pipe
s37 /system/lib/libc malloc debug qemu.so s38 /sys/qemu trace
s39 /system/bin/qemu-props s40 /dev/socket/genyd
s41 /dev/socket/baseband genyd s42 ro.kernel.android.qemud
s43 ro.kernel.qemu.gles s44 init.svc.qemud

Strings

s45 init.goldfish.rc s46 init.svc.qemu-props

Table B.7: Protection Atomss for the Emulator Detection Protection at Java Level

32

Imported Symbols
s1 ro.hardware s2 ro.boot.hardware
s3 ro.kernel.androidboot.hardware s4 ro.product.board
s5 ro.board.platform s6 ro.product.brand
s7 ro.product.device s8 ro.cm.device
s9 ro.bootimage.build.fingerprint s10 ro.build.fingerprint
s11 ro.product.manufacturer s12 ro.product.model
s13 goldfish s14 ranchu
s15 vbox86 s16 ttVM x86
s17 unknown s18 generic
s19 nox s20 FRF91
s21 google sdk s22 generic x86
s23 generic x86 64 s24 Andy
s25 Droid4X s26 vbox
s27 Genymotion s28 ro.kernel.qemu
s29 qemud s30 qemu.sf.lcd density
s31 qemu.hw.mainkeys s32 qemu.sf.fake camera
s33 /dev/socket/qemud s34 /dev/qemu pipe
s35 /system/lib/libc malloc debug qemu.so s36 /sys/qemu trace
s37 /system/bin/qemu-props s38 /dev/socket/genyd
s39 /dev/socket/baseband genyd s40 ro.kernel.android.qemud
s41 ro.kernel.qemu.gles s42 init.svc.qemud

Strings

s45 init.goldfish.rc s44 init.svc.qemu-props

Table B.8: Protection Atomss for the Emulator Detection Protection at Native Level

• Dynamic Analysis Framework Detection - Java protection atoms in Table B.9, page 33, Native protection
atoms in Figure B.10, page 34

c1 dalvik/system/DexFile c2 java/lang/StackTraceElement

c3 android/app/ActivityManager$RunningServiceInfo
c4 android/app/ActivityManager c5 android/content/pm/ApplicationInfoClasses
c6 java/util/Enumeration c7 java/lang/reflect/Modifier

m1 java/lang/StackTraceElement.getClassName

m2 java/lang/StackTraceElement.getMethodName

m3 android/app/ActivityManager.getRunningServices

m4 android/content/Context.getPackageCodePath

m5 java/lang/reflect/Modifier.isNative m6 dalvik/system/DexFile.entries
Methods

m7 java/util/Enumeration.hasMoreElements m8 java/util/Enumeration.nextElement

a1 android/content/pm/ApplicationInfo.sourceDir

a2 android/app/ActivityManager$RunningServiceInfo.processAttributes
a3 android/content/pm/ApplicationInfo.processName

s1 com.saurik.substrate s2 com.saurik.substrate.MS$2
s3 de.robv.android.xposed.XposedBridge s4 XposedBridge.jar
s5 xposed s6 fridaserver
s7 LIBFRIDA s8 frida
s9 frida-gadget s10 frida-agent
s11 /proc/self/maps s12 classes.dex
s13 classes2.dex s14 classes3.dex

Strings

s15 classes4.dex s16 classes5.dex

Table B.9: Protection Atomss for the Dynamic Analysis Framework Detection Protection at Java Level

33

Imported Symbols
s1 com.saurik.substrate s2 com.saurik.substrate.MS$2
s3 de.robv.android.xposed.XposedBridge s4 XposedBridge.jar
s5 xposed s6 fridaserver
s7 LIBFRIDA s8 frida
s9 frida-gadget s10 frida-agent
s11 127.0.0.1 s12 REJECT

Strings

s13 /proc/self/maps

Table B.10: Protection Atomss for the Dynamic Analysis Framework Detection Protection at Native Level

• Debugger Detection - Java protection atoms in Table B.11, page 34, Native protection atoms in Figure B.12,
page 34

Classes c1 android/os/Debug c2 android/app/ActivityManager

m1 android/os/Debug.isDebuggerConnected

m2 android/os/Debug.waitingForDebuggerMethods
m3 android/app/ActivityManager.isRunningInTestHarness

Attributes
s1 TracerPid s2 /proc/self/status
s3 /proc/ s4 /statusStrings
s5 pid

Table B.11: Protection Atomss for the Debugger Detection Protection at Java Level

1i fork 2i getppid

3i ptrace 4i waitpid

5i pthread create 6i pthread exit
Imported Symbols

7i WIFSTOPPED 8i pthread t

s1 TracerPid s2 /proc/self/status
s3 /proc/ s4 /statusStrings
s5 pid

Table B.12: Protection Atomss for the Debugger Detection Protection at Native Level

• Debuggable Status Detection - Java protection atoms in Table B.13, page 34, Native protection atoms in
Figure B.14, page 34

c1 android/content/Context c2 android/content/pm/ApplicationInfo

c3 android/content/pm/ApplicationInfo c4 android/os/ProcessClasses
c5 substituteWithTheApplicationPackage/BuildConfig

m1 android/content/Context.getApplicationInfo m2 java/lang/Runtime.getRuntimeMethods
m3 java/lang/Runtime.exec

a1 android/content/pm/ApplicationInfo.flags

a2 android/content/pm/ApplicationInfo.FLAG DEBUGGABLEAttributes
a3 substituteWithTheApplicationPackage/BuildConfig.DEBUG

s1 ro.debuggable s2 getpropStrings
s3 android.os.SystemProperties

Table B.13: Protection Atomss for the Debuggable Status Detection Protection at Java Level

34

Imported Symbols
Strings s1 ro.debuggable

Table B.14: Protection Atomss for the Debuggable Status Detection Protection at Native Level

• Altering Debugger Memory Structure - Native protection atoms in Table B.15, page 35

Imported Symbols 1i gDvm

Strings s1 libart.so s2 ZTVNa3rt4JDWP12JdwpAdbStateE

Table B.15: Protection Atomss for the Altering Debugger Memory Structure Protection at Native Level

• Signature Checking - Java protection atoms in Table B.16, page 35, Native protection atoms in Table B.17,
page 36

c1 java/security/MessageDigest c2 android/content/pm/PackageInfo

c3 android/content/pm/Signature c4 android/content/pm/PackageManager

c5 android/content/Context c6 android/content/pm/VersionedPackageClasses
c7 android/content/pm/SigningInfo

m1 java/security/MessageDigest.getInstance

m2 java/security/MessageDigest.update

m3 java/security/MessageDigest.digest

m4 android/content/pm/PackageManager.getPackageInfo

m5 android/content/pm/Signature.toByteArray

m6 android/content/Context.getPackageManager

m7 android/content/Context.getPackageName

m8 android/content/pm/SigningInfo.getApkContentsSigners

Methods

m9 android/content/pm/SigningInfo.getSigningCertificateHistory

a1 android/content/pm/PackageManager.GET SIGNATURES

a2 android/content/pm/PackageManager.GET SIGNING CERTIFICATESAttributes
a3 android/content/pm/PackageInfo.signatures
s1 MD2 s2 MD5
s3 SHA s4 SHA-1
s5 SHA-224 s6 SHA-256
s7 SHA-384 s8 SHA-512
s9 No package found for authority: s10 Found content provider

Strings

s11 , but package was not

Table B.16: Protection Atomss for the Signature Checking Protection at Java Level

35

Imported Symbols
s1 META-INF/ s2 .RSA
s3 .DSA s4 .EC
s5 /proc/self/cmdline s6 /proc/self/maps
s7 tbsCertificate s8 version
s9 serialNumber s10 signature
s11 issuer s12 validity
s13 subject s14 subjectPublicKeyInfo
s15 issuerUniqueID-[optional] s16 subjectUniqueID-[optional]
s17 extensions-[optional] s18 signatureAlgorithm
s19 signatureValue s20 version
s21 issuerAndSerialNumber s22 digestAlgorithmId
s23 authenticatedAttributes-[optional] s24 digestEncryptionAlgorithmId
s25 encryptedDigest s26 unauthenticatedAttributes-[optional]
s27 DigestAlgorithms s28 contentInfo
s29 crls-[optional] s30 signerInfos

Strings

s31 signerInfo

Table B.17: Protection Atomss for the Signature Checking Protection at Native Level

• Code Integrity Checking - Java protection atoms in Table B.18, page 36

c1 java/util/zip/ZipFile c2 java/util/zip/ZipEntry

c3 java/util/jar/JarFile c4 java/util/jar/JarEntry

c5 java/util/zip/Adler32 c6 java/util/zip/CRC32Classes
c7 android/content/Context c8 android/content/pm/ApplicationInfo

m1 android/content/Context.getPackageCodePath

m2 java/util/jar/JarEntry.getCrc m3 java/util/zip/ZipEntry.getCrc

m4 java/util/zip/Adler32.update m5 java/util/zip/CRC32.update

m6 java/util/zip/Adler32.getValue m7 java/util/zip/CRC32.getValue

m8 java/util/zip/ZipFile.getEntry m9 java/util/zip/ZipFile.entries

m10 java/util/jar/JarFile.getEntry m11 java/util/jar/JarFile.entries

Methods

m12 java/util/jar/JarFile.getJarEntry m13 android/content/Context.getString

Attributes a3 android/content/pm/ApplicationInfo.sourceDir

s1 classes.dex s2 classes2.dex
s3 classes3.dex s4 classes4.dexStrings
s5 classes5.dex s6 MultiDexExtractor.load(

Table B.18: Protection Atomss for the Code Integrity Checking Protection at Java Level

36

• Installer Verification - Java protection atoms in Table B.19, page 37

c1 android/content/pm/PackageInfo c2 android/content/pm/PackageManagerClasses
c3 android/content/Context

m1 android/content/pm/PackageManager.getInstallerPackageName

m2 android/content/Context.getPackageManager

m3 android/content/Context.getPackageName
Methods

m4 android/content/pm/PackageManager.getPackageInfo

a1 android/content/pm/PackageInfo.packageName

a2 android/content/pm/PackageInfo.versionCodeAttributes
a3 android/content/pm/PackageInfo.versionName

s1 com.android.vending s2 com.amazon.venezia
s3 com.sec.android.app.samsungapps s4 cm.aptoide.pt
s5 org.fdroid.fdroid s6 com.uptodown

Strings

s7 com.uptodown.lite s8 com.slideme.sam.manager

Table B.19: Protection Atomss for the Installer Verification Protection at Java Level

• SafetyNet Attestation - Java protection atoms in Table B.20, page 37

c1 com/google/android/gms/safetynet/SafetyNet

c2 com/google/android/gms/safetynet/SafetyNetClient

c3 com/google/android/gms/safetynet/SafetyNetApi
Classes

c4 com/google/android/gms/safetynet/SafetyNetApi$AttestationResponse
m1 com/google/android/gms/safetynet/SafetyNet.getClient

m2 com/google/android/gms/safetynet/SafetyNetClient.attestMethods
m3 com/google/android/gms/safetynet/SafetyNetApi$AttestationResponse.getJwsResult

Attributes
s1 basicIntegrity s2 ctsProfileMatch
s3 apkDigestSha256 s4 apkCertificateDigestSha256
s5 apkPackageName s6 timestampMs

Strings

s7 nonce

Table B.20: Protection Atomss for the SafetyNet Attestation Protection at Java Level

37

Appendix C. Fingeprints Derived From the Protections

This appendix presents the fingerprints of the protections. We singularly present the protection atoms relevant to
each protection and then the fingerprints. Note that in the fingerprints there are not protection atoms related to classes.
We already include them in the detection of the methods and the attributes. In practice, detecting a method or an
attribute of a class implies the presence of the class itself.

Appendix C.1. AD Protections
• Emulator Detection - Java fingerprint in Table C.21, page 38, Native fingerprint in Figure C.22, page 38

Condition Protection Atomss Description
A s1-2 “Android.os.SystemProperties” or “getprop”
B s3-14 Strings for getting smartphone properties
C a1-8 android.os.Build attributes
D s15-18 s21-29 string for comparison of properties
E s30-47 emulator related strings
F m1 the isUserAMonkey method

(((A ∧ B) ∨C) ∧ D) ∨ E ∨ F

Table C.21: Fingerprint for the Emulator Detection Protection at Java Level

Condition Protection Atomss Description
A s1-12 strings for getting properties
B s13-16 s19-27 string for comparison of properties
C s28-45 emulator related strings

((A ∧ B) ∨C)

Table C.22: Fingerprint for the Emulator Detection Protection at Native Level

• Dynamic Analysis Framework Detection - Java fingerprint in Table C.23, page 38, Native fingerprint in Fig-
ure C.24, page 39

Condition Protection Atomss Description
A s1-19 At least one of strings related to the frameworks
B m1-2 At least one of the methods for handling a thrown exception
C m3 The method for getting the running services
D s12-16 At least one of the strings for the .dex file
E a1 ApplicationInfo.sourceDir for the path of the APK
F m4 method for getting the path of the APK
G m5 check if a method is native thus hooked
H s11 “/proc/self/maps” string
I a2-3 get the name of the process

A ∨ ((E ∨ F) ∧ D ∧G)

Table C.23: Fingerprint for the Dynamic Analysis Framework Detection Protection at Java Level

• Debugger Detection - Java fingerprint in Table C.25, page 39, Native fingerprint in Figure C.26, page 39

• Debuggable Status Detection - Java fingerprint in Table C.27, page 39, Native fingerprint in Figure C.28,
page 39

38

Condition Protection Atomss Description
A s1-10 At least one of strings related to the frameworks

A

Table C.24: Fingerprint for the Dynamic Analysis Framework Detection Protection at Native Level

Condition Protection Atomss Description
A m1-3 Methods related to the presence of a debugger
B s1 “TracerPid” string
C s2 “/proc/self/status” string
D s3-4 both “/proc/” + “/status” strings

A ∨ (B ∧ (C ∨ D))

Table C.25: Fingerprint for the Debugger Detection Protection at Java Level

Condition Protection Atomss Description
A i1-4 fork, getpid, ptrace or waitpid symbols
B s1 “TracerPid” string
C s2 “/proc/self/status” string
D s3-4 both “/proc/” + “/status” strings

A ∨ (B ∧ (C ∨ D))

Table C.26: Fingerprint for the Debugger Detection Protection at Native Level

Condition Protection Atomss Description
A s1 “ro.debuggagle” string for the system property
B s2-3 “Android.os.SystemProperties” or “getProp” strings
C a2-3 At least one of the attributes related to a debuggable status

(A ∧ B) ∨ (C)

Table C.27: Fingerprint for the Debuggable Status Detection Protection at Java Level

Condition Protection Atomss Description
A s1 “ro.debuggagle” string

A

Table C.28: Fingerprint for the Debuggable Status Detection Protection at Native Level

• Altering Debugger Memory Structure - Native fingerprint in Figure C.29, page 39

Condition Protection Atomss Description
A s1-2 both the strings extracted from the ART protection
B i1 the gDvm symbol for DALVIK

A ∨ B

Table C.29: Fingerprint for the Altering Debugger Memory Structure Protection at Native Level

39

Appendix C.2. AD Protections

• Signature Checking - Java fingerprint in Table C.30, page 40, Native fingerprint in Figure C.31, page 40

Condition Protection Atomss Description
A s1-8 At least one of strings for digest algorithm
B m1-3 All of methods for digest
C m8-9 At least one of methods for signatures
D a1-3 At least one of attribute for signatures

A ∧ B ∧ (C ∨ D)

Table C.30: Fingerprint for the Signature Checking Protection at Java Level

Condition Protection Atomss Description
A s1-6 All of the string for getting the certificate

A

Table C.31: Fingerprint for the Signature Checking Protection at Native Level

• Code Integrity Checking - Java fingerprint in Table C.32, page 40

Condition Protection Atomss Description
A s1-5 classes.dex strings
B m1 Method for getting the package code path
C a1 Attribute to get the package code path
D m2-3 At least one of the methods for the CRC
E m4-7 At least one of the methods for the CRC

A ∧ (B ∨C) ∧ (D| ∨ E)

Table C.32: Fingerprint for the Code Integrity Checking Protection at Java Level

• Installer Verification - Java fingerprint in Table C.33, page 40

Condition Protection Atomss Description
A s1-8 At least one of the stores names
B m1 method getInstallerPackageName

A ∧ B

Table C.33: Fingerprint for the Installer Verification Protection at Java Level

• SafetyNet Attestation - Java fingerprint in Table C.34, page 41

Appendix D. List of Libraries Filtered

The list of package names of third-party libraries is by no means complete. Indeed, future work consists also of
enriching this collection. The “*” character is the wildcard character.

40

Condition Protection Atomss Description
A m1-3 At least one of the methods
B c1-4 At least one of the classes

A ∧ B

Table C.34: Fingerprint for the SafetyNet Attestation Protection at Java Level

android.* androidx.* butterknife.* com.android.*
com.adcolony.* com.adjust.* com.crittercism.* com.readystatesoftware.*
com.appsflyer.* com.networkbench.* com.dropbox.* com.braintreepayments.*
com.airbnb.lottie.* com.jakewharton.* com.rateus.* com.twitter.*
com.comscore.* com.my.target.* com.startapp.* com.mobvista.*
com.facebook.* com.monet.* com.samsung.* com.kochava.*
com.baidu.* com.tune.* com.amazon.* com.moat.*
com.inmobi.* com.flurry.* com.tencent.* com.paypal.*
com.distil.* com.google.* com.zendesk.* com.bugsnag.*
com.applovin.* com.squareup.* com.foursquare.* com.mixpanel.*
com.getkeepsafe.* com.qihoo360.* com.anjlab.* com.scottyab.*
com.unity3d.* com.zopim.* com.learnium.* com.crashlytics.*
com.stripe.* com.umeng.* cn.jiguang.* dalvik.*
dagger.* de.blinkt.openvpn.* java.* javax.*
io.fabric.* io.agora.* io.sentry.* io.intercom.*
io.branch.* io.reactivex.* io.realm.* net.hockeyapp.*
net.openid.* org.acra.* org.spongycastle.* org.xbill.*
okio.gzipsing.* org.apache.* org.chromium.* org.conscrypt.*
org.mozilla.* org.sufficientlysecure.* org.godotengine.* org.webrtc.*
okhttp3.* org.greenrobot.* org.robolectric.* org.parceler.*
retrofit2.* kotlin.* kotlinx.*

Table D.35: Third-Party Libraries Filtered

41

	Introduction
	Survey of Anti-Debugging and Anti-Tampering Protections
	Attack Model
	AD and AT Protections Survey
	Anti-Debugging protections
	Anti-Tampering protections
	Exclusions

	Definition of Protection Fingerprints
	General Approach for Protections Atoms Identification
	Boolean Formula applied on Protection Atoms
	Handling Reflection
	Concerns on Fingerprint Fragility
	Tool Implementation

	Incremental Validation and Refinement of Protection Fingerprints
	Validation and Refinement with Toy Apps
	Validation and Refinement with Open Source Apps
	Validation and Refinement With Closed Source Apps

	Large-Scale Analysis
	Research Questions
	Metrics
	Subjects Apps
	Analysis Procedure
	RQ1 - Adoption of AD and AT Protections
	RQ2 - Integration of Multiple Protections
	RQ3 - Protections in Developers' Code and Third-Party Libraries
	RQ4 - Protections deployed at Java and Native level
	RQ5 - Evolution in Adoption of AD and AT Protections

	Discussion
	Technical Limitations
	Threats to Validity

	Related Work
	New Protections for Android Apps
	Large-Scale Studies on Android Apps
	Large-Scale Study on the Adoption of Protections in Android Apps

	Future Work
	Conclusion
	Protections Implementation Collection
	AD Protections
	AT Protections

	Protection Atoms
	AD Protections

	Fingeprints Derived From the Protections
	AD Protections
	AD Protections

	List of Libraries Filtered

