
1

Mitigating Debugger-based Attacks to Java Applications with
Self-Debugging

DAVIDE PIZZOLOTTO, Osaka University, Japan
STEFANO BERLATO, DIBRIS, University of Genoa, Italy and Center for Cybersecurity, Fondazione Bruno
Kessler, Italy
MARIANO CECCATO, University of Verona, Italy

Java bytecode is a quite high-level language and, as such, it is fairly easy to analyze and decompile with
malicious intents, e.g., to tamper with code and skip license checks. Code obfuscation was a first attempt
to mitigate malicious reverse engineering based on static analysis. However, obfuscated code can still be
dynamically analyzed with standard debuggers to perform step-wise execution and to inspect (or change)
memory content at important execution points, e.g., to alter the verdict of license validity checks. Although
some approaches have been proposed to mitigate debugger-based attacks, they are only applicable to binary
compiled code and none address the challenge of protecting Java bytecode.

In this paper, we propose a novel approach to protect Java bytecode from malicious debugging. Our
approach is based on automated program transformation to manipulate Java bytecode and split it into two
binary processes that debug each other (i.e., a self-debugging solution). In fact, when the debugging interface
is already engaged, an additional malicious debugger cannot attach. To be resilient against typical attacks, our
approach adopts a series of technical solutions, e.g., an encoded channel is shared by the two processes to
avoid leaking information, an authentication protocol is established to avoid Man-in-the-Middle attacks and
the computation is spread between the two processes to prevent the attacker to replace or terminate either of
them.

We test our solution on 18 real-world Java applications, showing that our approach can effectively block
the most common debugging tasks (either with the Java debugger or the GNU debugger) while preserving the
functional correctness of the protected programs. While the final decision on when to activate this protection is
still up to the developers, the observed performance overhead was acceptable for common desktop application
domains.

CCS Concepts: • Security and privacy→ Software reverse engineering.

Additional Key Words and Phrases: Anti-debugging, Maliciuos reverse engineering, Tampering attacks, Man
at the end attacks

ACM Reference Format:
Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato. 2023. Mitigating Debugger-based Attacks to Java
Applications with Self-Debugging. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2023), 39 pages.
https://doi.org/10.1145/3631971

1 INTRODUCTION
Software might contain valuable assets that an attacker could be interested in stealing, such as secret
keys to decode paid live media streams. A program might also enforce certain usage constraints

Authors’ addresses: Davide Pizzolotto, davidepi@ist.osaka-u.ac.jp, Osaka University, Osaka, Japan; Stefano Berlato,
sberlato@fbk.eu, DIBRIS, University of Genoa, Genoa, Italy and Center for Cybersecurity, Fondazione Bruno Kessler,
Trento, Italy; Mariano Ceccato, mariano.ceccato@univr.it, University of Verona, Verona, Italy.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1049-331X/2023/1-ART1
https://doi.org/10.1145/3631971

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0002-7690-6592
HTTPS://ORCID.ORG/0000-0002-1700-672X
HTTPS://ORCID.ORG/0000-0001-7325-0316
https://doi.org/10.1145/3631971
https://orcid.org/0000-0002-7690-6592
https://orcid.org/0000-0002-1700-672X
https://orcid.org/0000-0001-7325-0316
https://doi.org/10.1145/3631971

1:2 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

that an attacker may want to subvert or skip, such as a routine to check a license validity. All
these attacks are known as Man-at-the-End attacks, because they aim at tampering with a piece of
software that runs on a client that can be observed, analyzed and eventually tampered with by the
attacker.

Code splitting [6, 7] was proposed to mitigate malicious reverse engineering and code tampering
attacks by splitting a program into two components. A component is run locally on the end-user
machine, while a second component, that contains the security sensitive parts, is run on a protected
server (e.g., in the cloud) where it can not be inspected nor tampered with. The overall correct
program execution is guaranteed as long as the server part runs in parallel with the client part.

While moving (a portion of) the computation to the cloud might represent a definitive solution to
hide a program from a potential client-side attacker, this solution involves some constraints. First,
the application owner should sustain the additional cost for the cloud infrastructure, that would
probably scale with the number of connected clients. Second, code splitting requires the client-side
application to be always connected and constantly communicating with its server-side counterpart.
This might not be totally accepted in some contexts, especially when causing usability or latency
problems and scalability issues. For instance, the gaming industry has shown a concrete example of
problems with code-splitting, due to the always-online constraint and because it resulted in Denial
of Service to legitimate users [18, 25, 29]. When the cloud cost is not compatible with the application
business model or when the mandatory online constraint is not met, pure-offline protections are
an option to mitigate code tampering attacks.

Existing studies [8, 9] with professional hackers and practitioners suggested that any tampering
attack is preceded by malicious reverse engineering activities to let an attacker understand the
code, formulate assumptions and plan for the actual attack. The same studies also highlight that,
especially when code obfuscation [13, 14] is used to turn a program harder to statically understand
and analyze, attackers prefer to start with dynamic analysis by concretely executing the program.
Indeed, since the effort to undo obfuscation is considered not worth it, attackers typically consider
more effective to use a standard debugger to follow the program execution and to inspect its
memory at certain points that they deem interesting. The adoption of protections against malicious
debugging is also recommended by specialized organizations, for instance by OWASP [27].
For these reasons, several anti-debugging approaches have been proposed [1, 2] to limit the

possibility of using a debugger, usually by disrupting and messing up with the interface that a
running program offers to the debugger.
While such anti-debugging approaches have shown to be effective to protect compiled binary

code, to the best of our knowledge, no approach is available to effectively protect Java programs.
In fact, Java compiles to high-level bytecode that is quite easy to analyze and decompile [26], so
anti-debugging protections would be easier to spot in the Java bytecode and, thus, to bypass (e.g.,
by removing or tampering with them).
Nonetheless, Java is a mainstream programming language, largely used in both open source

and industrial projects [5]. Additionally, Java is often used to implement commercial software that
includes license-check routines or intellectual-property sensitive components, that could be the
target of malicious reverse engineering. Popular examples of this kind of license-protected Java
software include design andmodeling tools (e.g., IntelliJ IDEA Ultimate Edition,1 JRebel2), enterprise

1https://www.jetbrains.com/idea
2https://www.jrebel.com/blog/what-is-jrebel

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://www.jetbrains.com/idea
https://www.jrebel.com/blog/what-is-jrebel

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:3

and productivity programs (e.g., Camunda BPM,3 Alfresco Process Service,4 RapidMiner5) and
scientific applications (e.g., MATLAB Compiler,6 COMSOL Multiphysics Geneious7).

In this paper, we propose a novel approach, namely conceal.it, to protect Java programs from
malicious debugging. Since Java code is quite challenging to harden due to its easily reversible
nature, in our approach we first translate (portions of) a Java application into C code that compiles
to binary, and then we apply our anti-debugging protection both to the remaining Java code and to
the binary executable. Our protection is inspired by the intuitive notion of self-debugging initially
suggested by Abrath et al. [2], i.e., a program that debugs itself. Concretely, self-debugging consists
in splitting the program into two processes, where each of the two attaches as a debugger to the
other one. Since the most commonly used operating systems (e.g., Windows and UNIX-based) allow
a process to have just one debugger attached, an attacker would not be able to attach her/his own
debugger to perform malicious reverse engineering.
The solution by Abrath et al. exploits the UNIX fork system call to create the second process

(called child) from the first process (called parent). While their approach works on compiled code, it
does not apply to our context. In fact, compiled C code is integrated in Java as JNI code. It runs
within the Java Virtual Machine that, as a multithreaded process, is not fully compatible with the
solution proposed by Abrath et al. based on UNIX fork8.
This paper presents a novel approach to self-debugging with a more general applicability, that

overcomes the constraints of the forking mechanism. Instead of creating a copy of the first process
with the fork call, we simply start a new, generic, external process. In this way, our approach
can be applied to and protect a wider set of programs, including also JNI code in Java programs.
However, larger applicability comes with the drawback of a larger set of potential vulnerabilities to
mitigate, because of a larger attack surface that could be exploited by a potential attacker.
For instance, an attacker could stop the creation of the second process, to keep the debugging

slot of the main program available for malicious debugging. Alternatively, an attacker could detach
the second process without stopping it, to free the debugging slot. The attacker could also intercept
the point where the external process is started and the communication channel between the two
processes is established, to mount a sophisticated Man-in-the-Middle attack, with the final objective
of reading and tampering with the communication between the two processes to hide his/her
malicious debugger.
Delivering a secure solution for anti-debugging of Java code, as well as any self-debugging

mechanism that does not rely on the UNIX fork, requires addressing compelling research challenges.
This paper identifies and proposes a novel solution to address these two research challenges: (i)
ensuring integrity of the self-debugging protection and (ii) protecting the communication channel
between the two self-debugging processes. As discussed in more detail in Section 2.2, previous
research addresses the first challenge by splitting the code between the parent and the child — an
approach which makes more difficult to break the self-debugging mechanism but may still allow
an attacker to statically reconstruct the original code — while the second challenge is addressed by
relying on (the peculiarity of) the UNIX fork mechanism and the special parent-child relationship
between the self-debugging processes. A child process, in fact, inherits file descriptors (of, e.g.,
pipes and sockets) from its parent, and these descriptors can be used for establishing a dedicated

3https://camunda.com
4https://hub.alfresco.com/t5/alfresco-process-services/getting-started-with-alfresco-process-services/ba-p/290016
5https://rapidminer.com
6https://www.mathworks.com/products/matlab-compiler-sdk.html
7https://help.geneious.com/hc/en-us/sections/360009220612-General
8According to the fork documentation, “after a fork() in a multithreaded program, the child can safely call only async-
signal-safe functions” https://man7.org/linux/man-pages/man2/fork.2.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://camunda.com
https://hub.alfresco.com/t5/alfresco-process-services/getting-started-with-alfresco-process-services/ba-p/290016
https://rapidminer.com
https://www.mathworks.com/products/matlab-compiler-sdk.html
https://help.geneious.com/hc/en-us/sections/360009220612-General
https://man7.org/linux/man-pages/man2/fork.2.html

1:4 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

communication channel. Moreover, parent-child processes can share memory segments — that are
ideally not accessible by unrelated processes — over which they can communicate. Nonetheless,
attackers with administrator privileges may still intercept and read (cleartext) data exchanged
between the two processes.
In any case, the UNIX fork system call cannot be used in the more general case addressed in

this paper. Therefore (as we later show in Section 4.3), we design and propose novel strategies
specifically addressing these two challenges in a more general context. More in detail, the novel
contributions of this paper are:

• A novel anti-debugging approach that is able to protect Java programs from both the Java
debugger (e.g., JDB) and the binary debugger (e.g., GDB) at the same time;

• A completely open-source implementation of our approach9, available to researchers and
practitioners;

• Even if our anti-debugging approach is based on the known intuition of self-debugging, a
series of novel contributions have been proposed to make it resilient against a number of
attacks and satisfy the aforementioned research challenges. They are:
– A novel program transformation from a Java function to a Java Native Interface (JNI)
C program that is then split in two halves. These two halves must be run in parallel as
two distinct processes to keep the original program semantics, so that the attacker can
not simply stop one of them to attach his/her debugger. In particular, while in existing
approaches the protected code is moved either into the debugger or the debuggee, in
ours each original Java statement is transformed in an equivalent series of C instructions
scattered between both debugger and debuggee. This prevents terminating any of the two
processes even if the original unprotected code is composed by a single statement.

– A novel communication scheme between these two processes that integrates the debugger
system calls to make message exchange dependent on debugging through message masking.
Thus, detaching the debugger by patching its system calls would make a process unable to
communicate with the other one and cause the program to fail. Additionally, the mask used
to encode messages changes after each message in a way that is hard to predict, allowing
the two processes to safely use an external, unsafe communication channel.

– A novel authentication mechanism between the two processes that uses process identifiers
in a way that is hard for the attacker to replicate thus preventing an attacker frommounting
a Man-in-the-Middle attack between the two processes.

• The empirical validation of the proposed novel approach on a set of 18 open-source Java
programs with more than 1,000 stars on GitHub and at least 18 test cases each. It studies to
what extent our approach prevents common debugging tasks in mainstream debuggers, and
measures what is the runtime overhead.

Our approach is implemented in an open source tool named conceal.it, which is fully au-
tomated and annotation-driven, thus it can be added as a transparent post-compilation step, by
editing existing build scripts (e.g., Maven10 or Gradle11).
Despite the focus of this paper is on mitigating the attacks based on malicious debugging, as

emerged from the analysis on reverse engineering activities [8, 9], one protection alone is too weak
and should always be complemented with other protections, since an attacker is assumed to always
follow the easiest path and attack the weakest point first. For instance, anti-debugging should be
paired with code obfuscation [13, 14] and anti-tampering [35], to make protections protect each

9https://github.com/davidepi/oblive
10https://maven.apache.org/
11https://gradle.org/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/davidepi/oblive
https://maven.apache.org/
https://gradle.org/

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:5

other. However, we highlight that these kinds of reverse engineering protections are out of the
scope of this paper, which focuses on anti-debugging only.
The paper is organized as follows: in Section 2 we discuss the novelty of our approach with

respect to related work. After recalling some relevant background on debugging and automated
translation from Java to C in Section 3, Section 4 and Section 5 illustrate our approach against
binary-level and Java-level debuggers, respectively. Then, Section 6 presents our experimental
framework and the empirical results, which are discussed in Section 7. Section 8 closes the paper
with final remarks and future work.

2 RELATEDWORK
Given their actionable intrinsic nature, software protection techniques have a direct real-world
impact, especially on programs that contain valuable assets to protect. For this reason, many pro-
tections are designed and developed by practitioners (e.g., published in GitHub1213), organizations
(e.g., OWASP14) and enterprises (e.g., into commercial products like Guardsquare’s ProGuard15).
However, besides the industry, also academic researchers proposed a few original software protec-
tion techniques. Below, we present the most relevant work related to software protection available
in the literature, with a specific focus on anti-debugging techniques at Java (Section 2.1) and native
(Section 2.2) level. Thereafter, (in Section 2.3) we present relevant work on code splitting, an alter-
native approach to anti-debugging to hide the sensitive part of a program on a secure server where
it can not be analyzed.

2.1 Java-Level Anti-Debugging Protections
The first set of anti-debugging approaches at Java-Level is limited to determining the presence of a
debugger (i.e., debugger detection). Most commonly, these approaches query existing Application
Programming Interfaces (APIs) to detect a debugger, like IsDebuggerPresent in Windows and
Debug.isDebuggerConnected in Android. Other anti-debugging protections notice the presence
of a debugger by detecting the typical debugging-related flags, e.g., the flags -Xdebug, -Xrunjdwp
or -agentlib:jdwp.16 in the command line arguments of the program under execution.

Lim et al. [22] propose an anti-debugging technique for Android coupled with root and method
hooking detection. In detail, the authors base their protection on the android:debuggable flag in
the manifest of the Android application.17 However, the same authors noted that, as their protection
is implemented in Java, it can be easily subverted and bypassed, e.g., by reversing and patching the
code. For this reason, they extended their initial work by adding a native module written in C++
as a shared library [21]. The module checks the integrity of the protection implemented in Java,
eventually detecting method hooking and code modification attacks by examining the call stack
trace. Unfortunately, even if this follow-up work is implemented in native code, it still suffers major
limitations. As the authors themselves acknowledge, an attacker may replace the entire native
module and bypass the protection.
Another anti-debugging protection based on debugger-detection for Android was proposed by

Wan et al. [37]. Using checkpoints for integrity verification, the authors analyze open-source tools
for hookings methods and APIs (e.g., XPosed18). Their protection consists in asserting whether

12https://github.com/DimaKoz/stunning-signature
13https://github.com/CalebFenton/AndroidEmulatorDetect
14https://owasp.org/www-project-mobile-security-testing-guide/
15https://www.guardsquare.com/proguard
16https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
17https://developer.android.com/guide/topics/manifest/manifest-intro
18https://repo.xposed.info/module/de.robv.android.xposed.installer

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/DimaKoz/stunning-signature
https://github.com/CalebFenton/AndroidEmulatorDetect
https://owasp.org/www-project-mobile-security-testing-guide/
https://www.guardsquare.com/proguard
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
https://developer.android.com/guide/topics/manifest/manifest-intro
https://repo.xposed.info/module/de.robv.android.xposed.installer

1:6 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

one of these tools is currently being used for debugging by ensuring that the value of the related
checkpoint was unaltered.

These protections are generally simple to implement but, at the same time, easy to locate, bypass
or patch [21, 22]. Indeed, these APIs and flags are known and well documented, as they are originally
conceived to be used by developers. Anyway, the effectiveness of these protections does not depend
on the protection tool (which just detects the activity of a debugger). A major responsibility is left
as a manual task to the developers, who are supposed to implement the reaction when a debugger is
detected. For instance, after the detection of a debugger, the developers may immediately terminate
the application (e.g., like in [22]). Our approach is fundamentally different because it is not just
limited to detecting the presence of a debugger, but it actively prevents a debugger to attach to
the protected program. As an example, consider the previously mentioned protection from Lim
et al.[21]. While the authors themselves acknowledged that replacing the native module would
bypass the protection, this happens because the protection module is used merely to detect the
presence of a debugger. In our approach, instead, the protection module contains also program
logic and needs to run to ensure a correct execution of the protected code.

Indeed, our approach belongs to the second set of Java-level anti-debugging protections, which
aim at directly hindering the correct functioning of a debugger. Another approach belonging to
this second set of protections was proposed by Matenaar et al. [24] against the Java Debug Wire
Protocol (JDWP) for Java in Android applications. The authors exploit the fact that in the Dalvik
Virtual Machine19 there exists a global variable gDvm pointing to the debugger memory structure.
Essentially, the proposed protection uses this variable to manipulate the low-level JDWP interface,
blocking all debugging capabilities. Also Cho et al. [11] proposed a protection targeting Android,
although considering native level anti-debugging as well. The authors aggregate several debugger
detection methods such as hash value comparison (i.e., to detect the insertion of breakpoints
opcodes), time check and dedicated flags (i.e., the TracerPID flag which reports the process ID
value of an eventual debugger). Again, the Java-level anti-debugging protection is based on the
gDvm structure of the Dalvik Virtual Machine, as in the approach by Matenaar et al.

While these two protections are limited to a specific and obsolete version of Android (the Dalvik
Virtual Machine was replaced by the Android RunTime starting from version 5.0 of Android in late
201420), our approach is more generally applicable. In fact, our protection targets the Java debugger
intending to completely block any debugging-related capability, as it will be shown in Section 6.
Moreover, our anti-debugging protection is neither limited to the Android ecosystem nor relies on
specific dependencies (e.g., the gDvm variable). Instead, as later described in Section 5, we rely on
the consolidated Java Platform Debugger Architecture (JPDA) and on commonly used Unix system
calls (e.g., mprotect).

2.2 Native-Level Anti-Debugging Protections
The idea of exploiting the limit of a single debugger for a given process was already considered
both by practitioners2122 23 24 and researchers [1, 2, 28, 38].

A self-debugging protection requires at least two processes, one of which (i.e., the mock debugger)
debugs the other (i.e., the debuggee). However, the robustness of the protection is given by the

19https://source.android.com/devices/tech/dalvik
20https://www.android.com/versions/lollipop-5-0/
21https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-
software
22https://blog.malwarebytes.com/threat-analysis/2013/07/zeroaccess-anti-debug-uses-debugger/
23https://anti-debug.checkpoint.com/techniques/interactive.html
24https://www.virusbulletin.com/virusbulletin/2008/12/anti-unpacker-tricks-part-one

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://source.android.com/devices/tech/dalvik
https://www.android.com/versions/lollipop-5-0/
https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-software
https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-software
https://blog.malwarebytes.com/threat-analysis/2013/07/zeroaccess-anti-debug-uses-debugger/
https://anti-debug.checkpoint.com/techniques/interactive.html
https://www.virusbulletin.com/virusbulletin/2008/12/anti-unpacker-tricks-part-one

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:7

degree of interdependence between the involved processes [2]. Indeed, a strong binding is needed
between debugger and debuggee, so that attackers cannot trivially replace the mock debugger with
their own.

Xu et al. [38] first survey traditional protection schemes for Android apps to then propose their
own software protection schemes. The anti-debugging techniques presented are similar to those
considered in [11, 22, 24] (i.e., flag-based). However, the authors also introduce the use of the
ptrace system call for self-debugging. In their approach, the process forks and the child process
debugs the parent process. However, an attacker can easily kill the child process and then start
debugging the parent process.
The first proposal for a tightly-coupled self-debugging protection was discussed by Abrath et

al. [2] and later patented [33]. The authors discuss a self-debugging protection, which targets
native code of Android applications only, in which fragments of code are moved from the original
process to their mock debugger. This approach makes it harder for malicious reverse engineers to
replace the mock debugger and reconstruct the original unprotected program. The debugger and
the debuggee processes communicate through exceptions (e.g., raised by breakpoints) to further
hinder reverse engineering activities. However, the use of exceptions is a major giveaway of the
protection strategy. Moreover, migrated code fragments might be easy to identify. Finally, the mock
debugger process is left unprotected. Hence, attackers could easily attach their own debugger to
the mock debugger process to reverse engineer it.
These shortcomings were addressed in consequent work [1, 28] which built its contributions

directly on top of previous protection [2]. First, the authors replace exceptions with sigsegv signals
thrown by illegal memory accesses. Then, they hide migrated code fragments using complex xor-
masking. Finally, they allow reciprocal debugging between the debuggee and the mock debugger,
thus creating a circular dependency between the two processes to further harden the protection.
Similarly to these approaches, we also propose a self-debugging solution to block malicious

debugging. However, in the prior art, the mock debugger was created as a child process of the
debuggee. This allowed previous protections to exploit a tight connection between parent/child
processes and create a safe communication channel. Conversely, when working in a Java environ-
ment, an alternative, more general, process creation strategy must be used that involves a more
tenuous link between the two processes. This required us to elaborate a totally different protection
to strengthen the bonding between the mock debugger and the debuggee. To achieve this objective,
we proposed a novel automated transformation procedure to split the program into two halves, one
with the computation and the other with a stack of data, so that neither of them can be disconnected.
Moreover, we proposed a custom messaging system among the two processes with a language that
can change, whose messages are exchanged over an encoded communication channel and based
on an authentication system. This novel approach allows mitigating several attacks, including the
Man-in-the-Middle attack.

2.3 Client-Server Code Splitting
A complementary approach is represented by code splitting. Instead of trying to protect a program
frommalicious static/dynamic analysis, the program is split into two components. A first component
is still run on the end-user premises, where it could be subject to analysis and tampering. However,
the security-sensitive parts of the program should stay on the second component that is run on
a secure server (e.g., on the cloud), where no tampering and no detailed code inspection could
happen.

Ceccato at al. [6] presented a fully automated approach to apply code-splitting protection to
any arbitrary Java program. The developer is only supposed to decorate the code with custom

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

annotations, to specify the program security requirements, in the form what are the program
variables that contain sensitive and non-sensitive data. Then, static program slicing is used to
identify those program statements that are involved in the computation of sensitive data, because
they could be subject to malicious analysis or tampering. These statements represent the sensitive
portion of the program to be moved and executed in the cloud. Subsequently, automated code
rewrite performs the actual split and changes the original client-only program into the two client-
side and server-side components, with new statements and data structures to manage client-server
synchronization and remote execution.
The portion of the computation that is moved to the server is secured against man-in-the-end

attacks, but it requires constant connectivity to the internet (the protected client program would
not run offline) and it involves the additional cost of the cloud infrastructure. In a subsequent
work [7], a trade-off between security and performance is investigated by changing the amount of
code that is moved to the cloud. In fact, cloud cost could be reduced by moving part of the sensitive
code back to the client, at the cost of a less secure solution. However, the sensitive part left on the
client could be periodically replaced [10] to minimize the impact of attacks. This code replacement
strategy fits very well with code-splitting, because a new version of the client component could
be delivered that requires a new version of the corresponding server component. By stopping the
expired versions of the server components, the application owner can easily disconnect all the
clients that refused updates, that might be under attack.
The level of security of different splitting configurations has been investigated by Viticchié et

al. [36]. A user study has been conducted in a controlled environment to measure the correctness
and the amount of time spent by participants to complete attack tasks on different client versions,
analyzing which attack strategies were adopted depending on the split configuration to tamper
with.

Remote attestation [3, 12] allows server-side verification of the integrity of client-side programs
(e.g., the client program has not been tampered with). Code splitting can be used to take actions
when client integrity is not met. Remote attestation has been integrated with code splitting in a
novel approach called reactive attestation [34], i.e., the server component is stopped for those client
components that are under attack, preventing the correct execution of tampered programs.

3 BACKGROUND
Debugging is one of the most prominent techniques used by developers and reverse engineers
to understand the functioning of and extract information from a piece of software [9]. Through
debugging, a process (called “debugger” or “tracer”) can inspect the status and observe and control
the execution flow of another process (called “debuggee” or “tracee”). Intuitively, debugging is
widely used by software developers to identify defects in a program. However, debugging can also
be used by malicious reverse engineers and attackers to, e.g., extract valuable information, nullify
security measures and inject malware.

In this section, we illustrate how debugging occurs in Java (Section 3.1) and natively on Linux-like
Operative Systems (OSs) (Section 3.2). Then, we give an overview of the Java2C tool [30] which
we later employ (Section 3.3).

3.1 Debugging in Java
The JPDA defines the software modules needed for debugging Java applications. Figure 1 illustrates
the JPDA for Java 11,25 which consists of two main modules—a debuggee and a debugger—split

25https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/architecture.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/architecture.html

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:9

into two submodules each, two interfaces—Java Virtual Machine Tool Interface (JVM TI) and Java
Debug Interface (JDI)—and the JDWP communication protocol:

Debuggee

JVM back-endJVM TI

Debugger

front-end UIJDI

Communication
Channel

JDWP

Fig. 1. The Java Platform Debugger Architecture

• debuggee - it consists of the Java Virtual Machine (JVM) running the Java application being
debugged together with the back-end submodule. The JVM TI is the native interface defining
the expected services that a JVM should provide toward the back-end to allow the debugging
of Java applications. In other words, the JVM TI is the interface through which the back-end
submodule obtains debugging-related information from the JVM (e.g., current stack frames,
breakpoint hit notifications). The back-end is usually written in native code and supplied as
a native shared library (i.e., .so files in Linux-based OSs and .dll files in Windows-based
OSs), like in the reference implementation by Oracle;26

• debugger - it consists of the front-end and the User Interface (UI) submodules. Through
different connectors, the front-end can either wait for incoming connections or attach to an
already running back-end. The JDI is the high-level (usually Java-based) interface offered by
the front-end and used by the UI (e.g., an Integrated Development Environment (IDE)) to
allow users to send commands (e.g., set breakpoint) and receive debugging information.

The debuggee and the debugger exchange messages over an abstract communication channel
typically implemented either through sockets (for remote debugging) or shared memory (for local
debugging). In both cases, the JDWP defines the semantic, syntax and temporization of the messages
exchanged between the back-end and the front-end. The JDWP is asynchronous, stateless, and
it expects two basic packet types, i.e., command and reply packets. Command packets are used
by the front-end to request debugging specific information (e.g., show the current stack trace,
variables or trace output) or control the execution of the Java application (e.g., through stepping
and breakpoints). The back-end can also send command packets to notify the front-end of events
(e.g., breakpoint hit). Commands sent by the front-end expect a reply packet, while commands sent
by the back-end do not require a response packet27. Lastly, we highlight that the JPDA is highly
modular. As such, developers and malicious attackers may provide custom submodules instead of
using the Oracle reference implementation at any level.

3.2 Debugging Binary Code
The actual implementation of a native-level debugger heavily depends on the underlying OS (and
kernel). In Linux-like OSs, debugging usually happens through the PTRACE28 system call, which
expects as arguments (at least) a command to execute and the Process ID (PID) of the tracee.

To start debugging, the tracer has first to attach to the tracee through either the PTRACE_SEIZE
or the PTRACE_ATTACH commands. The former simply creates an attachment between the tracer
26https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html
27https://docs.oracle.com/en/java/javase/11/docs/specs/jdwp/jdwp-spec.html
28https://linux.die.net/man/2/ptrace

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jdwp/jdwp-spec.html
https://linux.die.net/man/2/ptrace

1:10 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

and the tracee, while the latter also sends a SIGSTOP signal to the tracee, causing it to stop its
execution. While the tracee is stopped, the tracer can use several debugging commands to, e.g.,
inspect the memory and influence the execution of the tracee. All commands are sent through the
PTRACE system call. The tracer can then resume the execution of the tracee, usually after having
defined further stopping conditions (e.g., a breakpoint or a watchpoint). Finally, the tracer can use
the PTRACE_DETACH command to detach from the tracee. Another command worth mentioning is
PTRACE_TRACEME, which is often used for self-debugging. In detail, a process can fork its execution
and have the resulting child invoke the PTRACE_TRACEME command, which signals that the child is
to be traced by its parent. Then, the parent can attach to the child using either PTRACE_ATTACH or
PTRACE_SEIZE.
It is fundamental to highlight that, in Linux-like OSs, debugging works per thread and not per

process. Moreover, the Linux kernel allows the presence of one and only one tracer, i.e., there
cannot be two different threads that simultaneously debug the same thread.
There exist several debuggers targeting C and C++ executables in Linux-like OSs, one of the

most commonly used being the GNU Debugger (GDB)29. GDB offers a command-line interface
through which it is possible to eventually start and then debug a running thread. Various UIs (e.g.,
gdbgui30) were developed to facilitate the use of GDB.

3.3 Java2c
The Java language, unlike languages like C or C++, is not based on native CPU instructions
depending on the CPU architecture. Instead, Java code compiles to an architecture-independent
intermediate representation called Java bytecode. To run a Java program, its bytecode is interpreted
and executed by the JVM. This interpreter is compiled for the specific CPU architecture of the
system on which the Java program is meant to run.

In addition to this intermediate representation, the JVM allows calling C and C++ functions from
within a Java program through the JNI framework. The purpose of this framework is to allow the
execution of platform-specific code that can not be written in Java, either because it comes from an
external library written in a different language or because it interfaces directly with the underlying
operating system.

Java2C [30] automatically generates a C function that is functionally equivalent to the segment
of the Java bytecode to replace, which is removed and changed into a call (via JNI) to the freshly
generated C. Practically, this transformation works by parsing the Java bytecode and, for each
bytecode instruction, a C fragment of code is emitted with one or few C statements that call
function(s) provided as a library by Java2C. Of course, a different fragment is available for each Java
opcode, with the objective that each fragment implements the same behavior as the Java opcode to
replace. For instance, the Java bytecode opcode that pushes an integer to the JVM stack is replaced
by a call to the Java2C library function that pushes the same integer value to a C local stack. This
library and all the fragments have been manually written when developing the Java2C tool. After
that, they are available as part of the tool, such that the translation can be applied automatically to
a specified method with no need to manually write any line of C code.
Translating a portion of Java code to C would allow exploiting software protections that only

make sense in low-level programs (e.g., binary code), and that would be of limited effectiveness
[26] on a high-level program (e.g., Java bytecode) such as the anti-debugging techniques we are
presenting in this paper.

29https://www.gnu.org/software/gdb/
30https://github.com/cs01/gdbgui/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://www.gnu.org/software/gdb/
https://github.com/cs01/gdbgui/

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:11

SensitiveClass.class

public int mul {...}

@NativeObfuscation
public int sum {...}

SensitiveClass.class

public int mul {...}

public native int sum;

libobfuscate.c

int sum {

_push(var[0]);
_push(var[1]);
_add();
_pop();

ireturn

}

Java2C

Java2C

GCC

Java Virtual Machine

libobfuscate.so

Fig. 2. Overview of the Java2C transformation setup: sensitive methods are removed from the original class
file and inserted into a C file. For each JVM opcode a C function implementing similar behavior is created.

The file is converted into a library and loaded into the JVM along with the modified .class file

An overview of the transformation is shown in Figure 2. In particular, Java2C scans the compiled
Java bytecode and looks for the particular annotation that signals the developer’s intention to
transform amethod from Java to C.When such annotation is found, the tool removes the body of the
method from the Java bytecode and adds the “native” modifier, meaning that the implementation
of this method will be provided as a JNI library. Java2C, then, reads the opcodes in the method body
and, for each statement, an equivalent C implementation is emitted. Finally, when the C source
code is completely generated, it is compiled as a shared library. At runtime, when the transformed
Java method is called, the JVM will load this C library that contains the transformed method body.

class Calculator {
@NativeObfuscation
int sum(int x, int y){

z=x+y;
return z;

}
}

(a) Original Java code

@NativeObfuscation
sum(II)I
ILOAD 1
ILOAD 2
IADD
IRETURN

(b) Compiled Java bytecode
#include <jni.h>
JNIEXPORT jint JNICALL Java_Calculator_sum(
JNIEnv *env, jobject thisObj, jint x, jint y) {
jvalue vars[3]; //function inputs
_push(vars[1]); //ILOAD 1
_push(vars[2]); //ILOAD 2
_push((int)_pop() + (int)_pop()); //IADD
return (int)_pop(); //IRETURN

}

(c) Transformed C code

Fig. 3. Transformation of a Java method used to perform an addition into a C method by means of Java2C

An example of this transformation is shown in Figure 3. The original Java code (left-hand side) just
returns the sum of the two formal parameters, the method is annotated as @NativeObfuscation

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

so it will be transformed by Java2C. It compiles to the Java bytecode in the center of the figure.
The JVM adopts a stack-based architecture and each operation removes or adds an element from/to
the stack. In this example, the LOAD opcode pushes the operand values to the stack, and the ADD
opcode pops the two topmost elements from the stack, adds them and pushes the results to the
stack. The top of the stack is then used as the return value.
The translated C code (right-hand side) replicates this stack-based behavior by using a local C

stack with the functions _push and _pop. The fact that the original Java bytecode and the generated
C code are both stack-based will be the foundation of our anti-debugging approach, which will be
presented in Section 4.

4 ANTI-DEBUGGING AT C LEVEL
The main objective of conceal.it is to provide anti-debugging for Java programs. However, this
goal is very hard to achieve, because Java code compiles to Java bytecode, a high-level representation
that is interpreted by the JVM. Unfortunately, the Java bytecode can be easily parsed and analyzed,
and it would be quite simple for an attacker to locate and circumvent possible instructions used to
block debugging [26].

For this reason, we adopt a different approach. Instead of preventing debugging at Java level,31 we
use Java2C to translate sensitive Java parts into C code. Then, we apply advanced anti-debugging
techniques at C level, where they are harder to detect and circumvent.

We propose to apply two anti-debugging techniques at C level: Time-Check and Self-Debugging.
Time-Check is simpler and it comes with a very low-performance impact. Self-Debugging is more
sophisticated and it is expected to be more resilient at the cost of higher price in terms of execution
time. These techniques are described in detail in Section 4.2 and Section 4.3 respectively.
To offer some protection also at Java level, a third anti-debugging technique is proposed and

described in detail in Section 5.

4.1 Overview and Configuration
We can see an example of the protected code in Figure 4. The configuration of conceal.it is
annotation driven, similarly to Java2C. Methods to be protected against malicious debugging
should be annotated with @AntidebugTime or @AntidebugSelf to specify which anti-debugging
technique to apply. These annotations have the @NativeObfuscation annotation as a dependency,
because Java2C has to run before conceal.it.
After running the Java2C transformation (as seen in Section 3.3) additional steps are taken by

conceal.it:
• Preamble: Some code is added at the beginning of the translated C code to activate the
anti-debugging protection at C level, either Time-Check or Self-Debugging, and to activate
anti-debugging at Java level (as explained later in Section 5);

• Postamble: Some code is appended at the end of the generated C code to deactivate the
anti-debugging protection at C level and to deal with recursion, before exiting the C scope
and returning to Java;

The preamble and postamble code differ between Time-Check or Self-Debugging, as we explain in
the following in their respective sections.

The decision on what methods to annotate, which means what code to protect, is not automated
and is delegated to the developers. Indeed, this decision should be based on the security requirements
specific to each program, that are known only to the developers. However, general considerations
31Note that our tool offers protection against debugging from the Java layer, but the entry point for the debugging protection
is in the C layer

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:13

SensitiveClass.class

public int mul {...}

@NativeObfuscation
@AntidebugSelf
public int sum {...}

libobfuscate.c

int sum {

enable_java_antidebug();
c_antidebug_preamble();

... method body ...

c_antidebug_postamble();

}

Java2C

Java2C GCC

Java Virtual Machine

libobfuscate.so

SensitiveClass.class

public int mul {...}

public native int sum;

Fig. 4. Additional code produced by the @AntidebugTime and @AntidebugSelf annotations compared to
the original Java2C structure presented in Section 3.3

can help and guide in making this decision. In general, we suggest deploying anti-debugging
protections on those portions of a program that manage valuable assets, that regulate payments
or implement critical parts of business logic that an attacker might be interested in inspecting
or changing. For instance, the following functionalities may reasonably be deemed to be worth
protecting against malicious debugging:

• Checks on commercial licenses to enable or disable paid features;
• Decisions on the activation of premium features, or features that should be available only in
specific environments;

• Handling of sensitive data (e.g., credit card numbers) and personal information to be protected
according to the applicable regulations and laws, like the General Data Protection Regulation32
in the European Union;

• Execution of cryptographic functions and management of secret keys and digital certificates;
• Unlocking of achievements and paid features in games (e.g., levels, goals, special items);
• Other complementary protections, such as anti-tampering, that should be used in combination
with anti-debugging.

We remark that, once the annotations are manually added, all the remaining steps to apply anti-
debugging are totally automated.

4.2 Time-Check
The Time-Check anti-debugging technique is based on the idea that, at debugging time, an attacker
performing step-wise execution across instructions is expected to cause a noticeable execution
time delay. Detecting this delay is an evidence to reveal debugging attempts, so that reactions may
be taken to prevent malicious analysis, such as program termination or execution of alternative
code to protect sensitive computation.

In particular, our approach is the following: in the preamble of the generated C code, we insert a
call to record the current time. Then, whenever we want to check if the program is being debugged,
we collect the new current time and compare it to the time recorded in the preamble. If the elapsed
time is longer than a threshold, we assume that the program is under debugging and it should react
accordingly. By default, this check is performed at least once in the postamble. Another option is to
add time checks more frequently, after each opcode translated by Java2C.

32https://gdpr-info.eu/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://gdpr-info.eu/

1:14 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

This approach is quite simple and comes with a small performance overhead. However, it is
expected to be not very resilient. In fact, most time functions are calls interfacingwith the underlying
hardware clock, and these functions might be statically detected or dynamically intercepted by an
attacker, and then subverted. For this reason and its overall simplicity, we use this method as a
baseline for resilience and performance comparison.

4.3 Self-Debugging
The self-debugging is an anti-debugging technique based on the constraint that only a single
debugger can attach to the debuggee program. This constraint holds in all Unix-like and Windows
operating systems. The underlying idea is that the debuggee attaches to and debugs itself, so that
no other additional debugger can attach. Thus, an attacker would not be able to attach his/her
own debugger and perform malicious analysis. This intuition was first proposed by Abrath et
al. [2][1] which attached a custom debugger to the program to protect in order to prevent additional
debuggers. Moreover, they moved a part of the original program to this custom debugger, to make
the protected program fail in case the custom debugger was detached in the attempt to attach the
attacker’s debugger.
Their approach, however, is generally aimed at C code and cannot work for Java applications.

While a combination of existing tools may seem a trivial solution, i.e. Java2C to translate Java to C
and then Abrath et al. anti-debugging to protect the translated C code, this would be a quite weak
solution that would be vulnerable both to static-analysis attacks and to dynamic-analysis attacks.

In fact, the anti-debugging approach proposed by Abrath et al. relies on fork to start the second
debugger process, and this is not compatible in general with JVM. While this method has been
used successfully in Android (Dalvik virtual machine), we could not replicate the same result
generically, e.g., on desktop JVM. The alternative technical solution involves a more tenuous link
between processes, because it consists in spawning the companion debugger process using the Java
ProcessBuilder API, and an external communication channel requires to be established that is very
insecure and could be the target of multiple attacks.

To deliver a novel solution that overcome these serious limitations, two major research challenges
need to be addressed, respectively, ensuring integrity of the self-debugging protection and the
security of their communication channel.

Research challenge 1 - At any moment during the execution of the protected code, the two self-
debugging processes must be debugging each other. An attacker must not be able to compromise
the integrity of the self-debugging protection by detaching or tampering with one of the two
processes.
An attacker must not be able to compromise the integrity of the self-debugging mechanics by

detaching or swapping the debugger or the debuggee with a malicious process. Moreover, although
the main objective of anti-debugging is mitigating debugger-based malicious analysis, we note
that an anti-debugging protection should not be trivially circumvented by an attack that statically
identifies where the protection operates and patches the code to remove or disable such protection.
To address this research challenge, we propose these novel strategies:

• Mitigate an attack that aims at terminating our debugger process, by splitting the program
code between the debugger and the debuggee, and by making them actively communicate to
run in sync.

• Mitigate an attack that aims at detaching the debugger, by using the debugger interface as an
active communication channel, required to run the protected code.

Similarly to Abrath et al., we also split the original computation between the debuggee and
the debugger, such that they are both mandatory for the overall computation to remain correct.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:15

In fact, in case the debugger process is not running, the computation will be incorrect. However,
the way the program is split is completely different than the approach proposed by Abrath et al.,
because we intend to mitigate various termination attack scenarios. Additionally, different attacks
might aim at tampering with protected code (e.g., remove system calls related to debugging) to still
have the debugger and debuggee run, but detached from each other, and make the debugger slot
available for the attacker. To mitigate these attacks, we use the debugger interface to exchange the
data needed to complete the computation. Thus, to preserve the correctness of the execution, the
debugger and the debuggee not only need to run, but they need to run and engage each other’s
debugging interface; otherwise, they would work on wrong data.

Research challenge 2 - Dynamic analysis should not easily decode or forge messages in the
communication between debugger and debuggee.
When static analysis and static tampering are hard, attackers typically move to dynamic analy-

sis [8]. Assuming that program execution can not be traced thanks to anti-debugging, an attacker is
left with the option to study the communication between the debugger and the debuggee processes.
For this reason, the second research challenge is about mitigating attacks on this communication
protocol. To address this research challenge, we adopt the following strategies:

• Message replay attacks are mitigated by using a one-time pad approach;
• Man-in-the-middle attacks are mitigated by mutual debugger-debuggee authentication.

An attacker might run the protected program a first time to record those messages that are
exchanged between the debugger and the debuggee. Then, the attacker might perform a second
execution in a tampered configuration (e.g., the original debugger is detached) but replay the
previous messages to hide the attack. To prevent this attack, messages are encoded with a mask
that is different for each message and hard to predict, so old messages can not be reused because
their mask will expire immediately after they are captured by the attacker. If an attacker is able to
observe the sequence of masks used to encode a sequence of messages, she/he might try and guess
the next mask, and adapt an expired message with the guessed mask. To mitigate this attack, we
turn the mask sequence hard to predict by skipping some masks in the sequence.

Eventually, the attacker might deploy a complex attack setting in which two new processes pair
respectively with the original debugger and debugee, to preserve the self-debugging pattern but
allow dynamic analysis. To mitigate this attack, our debugger and debuggee authenticate each
other before attaching to the other process.

To summarize, with our novel approach, we are tailoring the self-debugging intuition to exploit
the specificity of JVM and the peculiarities of C code translated by Java2C, to overcome these
vulnerabilities and deliver a solid and effective anti-debugging solution. In fact, given that JVM code
is structurally different from typical C source code, because Java2C outputs C code that resembles
the stack-based nature of Java bytecode, we can exploit this fact to adapt anti-debugging specifically
to a stack-based C program.

In the following, first we present the base idea, and then we gradually refine it by explaining, one
by one, all the technical solutions that are needed to prevent those problems and vulnerabilities
that the trivial concatenation of Java2C and C anti-debugging would involve.

4.4 Overview

The intuition of self-debugging by Abrath et al. [2] consists of running an additional process
whose purpose is to attach as a debugger to the program to protect. We use Java2C as starting point
to translate Java code to C, so the entry point of the code to protect is always a JNI function that is

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

Java Virtual Machine

libobfuscate.so

SensitiveClass.class

public int mul {...}

public native int sum;

OVM
Debug

Spawn

Fig. 5. Basic idea of the self-debugging technique. The protected code, libobfuscate.so, requests the JVM
to spawn an additional process, Obfuscation Virtual Machine (OVM), that will attach to the JVM itself.

generated by Java2C. Our objective is to spawn the additional process and attach it as a debugger to
the process of the program to be protected using ptrace, which requires the PID of the debuggee
process. The standard procedure in POSIX systems to spawn a new process would require to calling
fork to create the new process and then call exec to load an alternative executable code in the
fresh process. However, due to the multithreaded nature of the JVM and the lack of thread-safety in
fork, we must opt for a different approach. Instead, we use the Java ProcessBuilder class, called
by the C code, to spawn a new process and execute what we call the OVM, an additional program,
generated as part of the Java2C transformation, acting as a debugger. Additionally, we pass as a
parameter the PID of the C code running in JNI, obtained with getpid. The OVM, in turn, will use
this PID and attach to it using ptrace, so that no additional debuggers can attach.
Figure 5 shows an overview of the protection. The anti-debugging protection at C level is at

the beginning of the translated C code (c_antidebug_preamble() function in Figure 4), whereas
the OVM code is a separate component. Thus, after running conceal.it, we obtain 3 files: the
modified Java bytecode, the compiled C code as a JNI library and the compiled OVM executable.
However, this simple protection scheme would be vulnerable to several attacks to circumvent

it, either based on static tampering or dynamic analysis (e.g. man-in-the-middle between the two
processes). We elaborated a novel solution to address these two research challenges, summarized
in the following and described in detail in the rest of this section.
First of all, an attack could just terminate the OVM to free the debugging slot of the program

under attack. To prevent this attack, we establish a strong link between the JNI and the OVM, by
moving a part of the original program from the JNI part to the OVM. In this way, disconnecting
the OVM would cause an incorrect execution of the program.

To limit potential static analysis attacks to the OVM, the representation of the OVM language is
not constant, but it changes randomly. However, we note that this does not remove the need for a
strong obfuscation component, as we describe in Section 7.2.
Considering that the OVM cannot be removed, an alternative attack to free a debugging slot

could be just removing the ptrace system calls. To mitigate this attack, we made sure that the
ptrace call cannot be removed, by assigning it the responsibility to share a decoding mask between
the OVM and the JNI part, needed to decode their messages. In case the ptrace is removed, the
two processes would miss the decoding mask and they would not be able to communicate and
complete the overall execution.

An attacker might intercept some messages between the OVM and the JNI and conduct a plain-
text attack to guess the decoding mask. To prevent this attack, we decided to change the mask at

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:17

each message. In this way, even if a mask can be guessed, it would be useless to attack the rest of
the communication.
Additionally, to prevent the attacker from guessing the sequence of masks, some masks in the

sequence are skipped, adding non-linearity to the sequence value generation.
Eventually, an attacker might not change the code, but just positions herself in the middle and

intercept and tamper with messages. To prevent this attack, we enforced that the OVM and the JNI
authenticate each other in a way that the attacker cannot mimic.

4.5 Research challenge 1: Ensuring Protection Integrity
Addressing the first challenge consists in mitigating those attacks aiming at freeing the debugging

slot during the execution of the protected code, that either terminate the debugging process or
that patch the debugging system call. In the following subsections, we explain how we mitigate an
attack that terminates the debugging process, by splitting the necessary execution code between
the two processes, JNI and OVM in our case. Subsequently, we mitigate an attack that patches
the debugging system call, by exploiting the debugging-dependent interface between these two
processes to exchange execution data. In fact, this interface works as communication channel as
long as the two processes are still debugging-attached.

4.5.1 Overview of the Computational Split to Mitigate OVM Termination Attack.

There is no stable communication between the JNI part and the OVM, only the initial PID is
exchanged. Thus, the protected process cannot tell if the OVM has been successfully spawned
and attached to the JNI. This means that, even if an attacker cannot attach a debugger after the
invocation of the protected method, because a debugger would be already attached, the attacker
may still circumvent this protection by attaching a debugger before the invocation of such method.
In that case, the OVM would fail to protect the JNI and the JNI would continue anyway. More
simply, due to the lack of communication, an attacker can simply kill the OVM process without
any side effect on the JNI part, and commence debugging.
In order to strengthen the bonding between JNI and OVM, we want to ensure the correct

activation of the OVM debugging before executing the protected method. This means that passing
the JNI PID to the OVM is not sufficient, but we must wait for an answer from the OVM to
acknowledge the correct initialization of the ptrace call. For this reason, we need a communication
channel between the two processes. In our implementation, we used a single IPC socket, but any
other bidirectional communication channel is compatible with our scheme.
Figure 6 shows the initial setup between the JNI and the OVM. Initially, the JNI creates an IPC

socket with a random name 33, then it spawns the OVM process, passing the socket name as a
parameter. The OVM, immediately connects to the socket and replies with its PID. The JNI can
now ptrace the OVM process and, if successful, send its PID. The OVM will then ptrace the JNI and
send an ACK message in case of success. At this point, both processes are debugging each other. If
any ptrace call fails, the failing process will stop sending responses, leaving the other process to
wait indefinitely on the socket. Note that in our implementation IPC sockets are always reliable, as
defined in the manual34. However, if this is not the case, additional engineering effort is required in
order to handle lost messages.

33This was done to prevent clash of names if multiple obfuscations run at the same time. If the OS supports it, a better
approach would be to use abstract sockets that do not exist on the filesystem and are thus harder to attack.
34https://man7.org/linux/man-pages/man7/unix.7.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://man7.org/linux/man-pages/man7/unix.7.html

1:18 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

JNI

call

OVM

ptrace JNI PID

send ACK

dispatch

send OVM PID

send JNI PID

ptrace OVM PID

create IPC socket

Fig. 6. Message exchange when spawning the OVM

Despite this setup, the OVM is not essential for a correct execution: an attacker can either kill
the OVM process after the setup, and send random data to the socket to let the JNI side continues
its execution. This problem can be solved only by having an OVM that is mandatory for the correct
execution of the program. To achieve this, we exploit the fact that the C code translated by Java2C
closely follows the stack-based JVM style. In particular, in the JVM there are no CPU registers: a
stack is used to store and retrieve data across statements [23]. Each statement consumes zero or
more values from the stack and pushes zero or more values to the same stack, effectively using it
as temporary memory. We split the translated C code such that opcode execution is separated from
data access: we move the stack to the OVM side, while keeping the computation in the JNI part.

To better visualize how the splitting transformation is applied, we consider again Figure 3, that
shows the code after applying Java2C. We can notice that the addition opcode (IADD) pops two
values from the stack and pushes the sum result back onto the same stack. The two popped values
correspond to the addition operands (ILOAD1 and ILOAD2) and the pushed value correspond to the
result, to be later popped by the function return (IRETURN). Every opcode thus needs to pop some
input or push some output to/from the stack. According to Java specification, this holds for every
single non-reserved opcode 35.
To effectively split this (translated) C code, we separate the stack and the Java2C opcodes

implementation in two different processes. Then, we replace every push and pop call with send
and recv to communicate data between the two processes. This is done by modifying all the
Java2C library functions that mimic the JVM opcodes. Communication between the two sides is
done through messages passing over the IPC socket: the JNI side sends a command (1 byte) and
a parameter (8 bytes), and waits until the OVM responds with the ACK opcode and the result

35The only exception to this is the BREAKPOINT opcode. However, being used only for debugging, Java2C does not support
this opcode.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:19

(8 bytes) 36. These messages require the creation of a new Command Set for the OVM, shown
in Table 1. The implementation of the OVM now involves repeatedly waiting for a message in the
IPC socket, decoding the command and parameter, executing it and returning the answer.

#include <jni.h>
JNIEXPORT jint JNICALL ... {

jvalue vars[3]; //function inputs
_send(_encode(STACK, 2));

/* ILOAD 1 */
_send(_encode(PUSH, vars[1]));
_recv(); //wait for ACK
/* ILOAD 2 */
_send(_encode(PUSH, vars[2]));
_recv(); //wait for ACK
/* IADD */
_send(_encode(POP));
int val1 = _recv();
_send(_encode(POP));
int val2 = _recv();
int res = val1 + val2;
_send(_encode(PUSH, res));
_recv(); //wait for ACK
/* IRETURN */
_send(_encode(POP));
int retval = recv();

_send(_encode(KILL));
return retval;

}

(a) JNI side

void ovm_main() {
jvalue* stack;

while(true) {
OvmOpcode opcode;
uint64_t payload;
uint64_t retval = 0;
RecvData data = _recv();
_decode(&opcode, &data);
if(opcode == KILL) {

free(stack);
return;

}
switch(opcode) {

case STACK:
stack = malloc(payload);
break;

case PUSH:
_push(stack, payload);
break;

case POP:
retval = _pop(stack);
break;

...
}
_send(_encode(ACK, retval));

}
}

(b) OVM side

Fig. 7. Pseudocode showing the Transformed code of Figure 3 after the splitting transformation of conceal.it.
The STACK and KILL system should be multidimensional in order to support recursive calls, but the code
here is simplified.

The example of code in Figure 3 is eventually split in the code in Figure 7. On the right-hand side
of Figure 7, we can see how the OVM is essentially operating as a virtual machine. Data is fetched
by the _recv call, decoded into instruction and payload, and executed by the switch statement.
Then, the result (if any) is encoded and sent back. On the left-hand side, the JNI performs a series of
send and recv to get and set the intermediate results of every opcode and execute the opcode itself
(i.e. performing the addition after getting the operands from the OVM or calling a JVM function
after getting its parameters). The initial call STACK and the final call KILL are used, respectively,
36The JVM stack can store only values up to 4 bytes, but some opcodes (i.e. PUSH2, POP2) can push or pop up to two values
from the stack, hence why the 8 bytes parameter

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

Table 1. OVM Instruction Set

Command Description
STACK Creates a stack with the given size. Can be nested in case of

recursive calls.
KILL Destroys the stack and, if no other stacks are left, terminates the

OVM.
ACK Returns a result. The OVM will never reply with anything but

ACK
CLR Resets the stack (set pointer to 0). This command is particularly

useful when raising an exception
FRONT Returns the top value of the stack, without removing it
PUSH Same as the JVM PUSH
PUSH2 Same as the JVM PUSH2
POP Same as the JVM POP
POP2 Same as the JVM POP2
DUP Same as the JVM DUP
DUP2 Same as the JVM DUP2
DUPX1 Same as the JVM DUPX1
DUPX2 Same as the JVM DUPX2
DUP2X1 Same as the JVM DUP2X1
DUP2X2 Same as the JVM DUP2X2
SWAP Same as the JVM SWAP

to setup and tear down the OVM. We can note how each _send and _recv call in the JNI part
of Figure 7 corresponds to a _push or _pop in the transformed code of Figure 3.
As an additional hardening measure, the binary value assigned to each opcode is randomly

decided at compile time. This randomization is meant to prevent an attacker from building a
potential C2Java tool to reverse the transformation. In fact, this split execution adopts a certain
opcode/payload mapping, i.e., each Java2C opcode is transformed in a call to send() with peculiar
data in its payload. Randomizing the opcode/payloadmapmeans that the same operation in different
builds will use different payloads. This would prevent an attacker from reusing the opcode/payload
mapping guessed in a program to automatically attack another program (or a different build of the
same program), thus mitigating the risk of a generic automated C2Java translator. This possible
reverse translation attack is explained in detail in Section 7.2 under “Reversing the protection”.

In conclusion, this split execution mitigate those attacks aiming at terminating the OVM as the
JNI requires it to store intermediate results until the very last operation.

4.5.2 Exchanging Data with Debugger to Mitigate Code Patching Attacks.

Considering that the debugger makes use of ptrace which is a system call, calls to ptrace
could be spotted by an attacker and patched away. In fact, an attacker may simply replace the
ptrace invocation with NOOP (i.e., null operation) and attach his/her own debugger to the JNI
layer. Removing the OVM is not possible due to the split execution, however, it is still possible to
patch just the ptrace and have JNI and OVM communicate without the need of debugging each
other, thus circumventing our protection. For this reason, we are going to introduce a way to turn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:21

the ptrace mandatory for a correct execution, such that an attacker patching this system call will
face crashes or wrong executions, i.e., use the ptrace to exchange data between the two processes.
To fulfill this requirement, we exploit the PTRACE_POKEDATA that allows a debugger to modify

the value of a variable in the tracee process. Our approach consists of making the JNI and OVM
exchange encoded data using the IPC socket (e.g., using XOR masking) with the data being decoded
using the mask generated at runtime and shared via PTRACE_POKEDATA.
In case an attacker replaces the ptrace call with NOOP, the decoding mask will not be shared

correctly because the PTRACE_POKEDATA call would fail, so the encoded exchanged data would be
useless and the computation of the attacked program would fail. In addition, to ensure the two
processes are debugging each other, the overall mask is computed by both processes: the first half
mask is randomly generated by the JNI and the second half mask is randomly generated by the
OVM.

JNI

call

OVM

ptrace JNI PID

send ACK

dispatch

send OVM PID

send JNI PID

ptrace OVM PID

create IPC socket

generate half mask

send mask address

send mask address
pokedata half mask

pokedata half mask

Fig. 8. Message exchange when spawning the OVM. Including mask generation for mandatory ptrace.

Figure 8 shows the updated message exchanged when spawning the OVM process. We can
notice that, after the ptrace call, both processes exchange the mask address via the IPC socket,
but they communicate the mask value via PTRACE_POKEDATA. After this initial step, every message
exchanged on the IPC socket can be encoded, and they will be decoded on the other side. Thus, in
case a wrong mask is used, because of a missing ptrace/PTRACE_POKEDATA removed by an attacker,
exchanged messages would be incorrect and the program cannot execute.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:22 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

4.6 Research challenge 2: Preventing Attack to the Communication Channel
The second challenge is to secure the communication channel between the two self-debugging

processes. First, to prevent message replay, we decided to encode each message with a different
mask, so each message is valid only once and can not be reused by an attacker. Second, the two
self-debugging processes mutually authenticate to prevent a man-in-the-middle attack, in which
the attacker analysis process pretends to be one of our two self-debugging processes.

4.6.1 One-Time Pad to Mitigate Known Plaintext Attacks.

The first message sent by the JNI to the OVM always contains the STACK opcode with a small
operand value (i.e., the stack size). This highly predictable message could be starting point of an
attack. In fact, an attacker could guess the decoded version of (most of the) first message and inter-
cept the encoded version of it. This information allows the attacker to attempt a Known-plaintext
attack (KPA). With this attack model, an attacker may guess the mask used to encode/decode
messages and to make the ptrace mandatory. If the mask is known to her/him, the attacker could
unravel the protection by patching the ptrace. This is mainly because, as explained in Section 4.5.2,
the mask is generated once when spawning the OVM and then reused for every opcode.
To overcome this problem, we need to use a different mask for each message. However, the

PTRACE_POKEDATA is a system call and using it for each instruction execution would result in
significant overhead. For this reason, instead of using different PTRACE_POKEDATA values directly as
different masks for every message, we use a single one to seed a Pseudo-random number generator
(PRNG) that in turn will generate the masks, reusing the same data exchange of Figure 8. In
particular, we use Xoroshiro256** as PRNG due to its speed [4].
We create a PRNG for both JNI and OVM, seeded by the same value. This seed is generated

half on the JNI and half on the OVM and exchanged with PTRACE_POKEDATA to keep the ptrace
mandatory, as explained in Section 4.5.2. Then, for each message, we generate a new random value
with the PRNG and use it as a mask to encode/decode the next message, effectively creating a
One-time pad (OTP) system. Each message exchange will now involve generating at least two values
from each PRNG: the first one to mask/unmask the JNI request, the second one to mask/unmask the
OVM response. With this enhancement, even in the case of a KPA, if the attacker would recover the
mask used by a message, the attacker could not recover the seed used to generate the full sequence
of masks. A different mask will be used in the subsequent message(s) that cannot be decoded by
the attacker.
Furthermore, to make the PRNG harder to attack, we implemented a system to prevent state

compromise extension attacks [19]. A state compromise extension attack attempts at recovering the
sequence of generated numbers upon knowing a single state of the PRNG. In our implementation,
however, the PRNG skips some states upon fulfilling some conditions decided by both JNI and
OVM at runtime, adding some non-linearity to the value generation. These conditions may be a
particular number being generated, or a particular response sent or received and are decided based
on the portion of mask exchanged with PTRACE_POKEDATA but not used in the PRNG seed.

4.6.2 Mutual Authentication to Mitigate Man-in-the-Middle Attacks.

The protection described so far involves two processes debugging each other, where none can
be killed and the ptrace cannot be removed. However, a Man-in-the-Middle attack would still be
possible, a third process between the JNI and OVM. A typical solution to this attack is based on
cryptography, to hide the clear text from the attacker who can observe the message exchanged by

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:23

the two processes [15]. The typical solution involves a secure way to establish a secure channel,
e.g., using a Certificate Authority (CA). Our problem is slightly different because the attacker
has additional capabilities, i.e., the attacker could perform static or dynamic analysis on the two
processes. Here we present a scenario that enables this kind of attack and our solution to protect
against it.

Java Virtual Machine

libobfuscate.so

SensitiveClass.class

public int mul {...}

public native int sum;

Fake OVM 1

Spawn

Fake OVM 2debug dispatch
OVM

dispatch

debug

Debugger Debugger
debug debug

Fig. 9. Man-in-the-middle attack to the Self-Debugging.

As shown in Figure 9, an attacker may replace the executable of the original OVMwith a fake one
that will just invoke a second fake OVM which in turn will invoke the original OVM37. With some
care in setting up the message passing, in particular by sending the PTRACE_POKEDATA variables to
the real OVM and by ensuring a correct message forwarding from the JNI/OVM through the fake
OVMs, an attacker may be able to circumvent the protection. This attack does not require to access
the decoded (clear text) messages, but forwarding their encoded form is enough. So, encryption
does not mitigate the kind of attack. Figure 9 shows an example of an attack scenario where both
JNI and OVM debug and are debugged by malicious processes.
To mitigate this attack scenario, the only possible solution is to verify the authenticity of the

target process. Typically, this attack is mitigated by authentication, e.g., based on CAs for network
communication. We also apply authentication, but in a different way, because CAs are not available
in our offline scenario [15]. In our approach, JNI and OVM are assigned the same AES key, that is
randomly generated at compile-time. At runtime, before exchanging PTRACE_POKEDATA variables
that contain the OTP seed, both JNI and OVM alter the seed by summing the PID of the other
process. Then, they encrypt the seed with the AES key and write it back via the pokedata exchange.
The receiving process has to subtract the PID from the seed before using it.

In this way, if a malicious process exists in the middle, the JNI and OVM will not add/subtract the
same PID from the key, and will use two differently seeded PRNGs while using the OTP encryption.
The attacker, in turn, cannot tamper with the seed and correct this mismatch, because it is encrypted
with the AES key she does not know.

However, if an attacker is able to retrieve either the AES key or the OTP key, she/he will still be
able to (partially or completely) subvert the protection. Even if this attack is in principle feasible,
it is expected to be quite hard and time consuming. We aim to delay and slow down as much as
possible this potential attack. This and other attacks are discussed later in Section 7.2.

37In self-debugging implementations using fork/exec the attacker can replace the exec part of the call

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

5 ANTI-DEBUGGING AT JAVA LEVEL
While the anti-debugging protection presented in Section 4 hampers native-level debugging, mali-
cious reverse engineers may still infer valuable information by debugging Java code. For instance,
an attacker could still observe and tamper with input data of the JNI toward the protected method
and then observe the corresponding output through the JDWP. Even though this attack would not
allow an attacker to directly observe the execution of the most sensitive code (that is translated to
C), it may still leak some valuable information on its input-output logic.
To complement the anti-debugging at the C level presented in Section 4, we now propose a

novel defense against debugging attempts at Java level which we call “Back-end Damaging”. Below,
we first discuss the high-level design (Section 5.1) to then describe the novel Java anti-debugging
protection we proposed in detail (Section 5.2).

5.1 High-Level Design
As discussed in Section 2.1, the most effective approach to anti-debugging aims at completely
blocking the capabilities of the debugger. Therefore, we base our anti-debugging protection on the
idea of damaging the debugging infrastructure that the JVM exposes. By relying on Java artifacts
only, our anti-debugging protection results to be applicable to any Java application, both mobile
(i.e., Android) and desktop. Moreover, our protection blocks the debugger activities while raising
no errors, making it more difficult to be located by the attacker.

Then, we remind that Java bytecode can be easily decompiled into a very close representation of
the original Java code, facilitating malicious reverse engineering and static analysis [22]. Instead,
decompilation is more difficult for compiled programs. For this reason, we choose to implement
our Java-level anti-debugging protection in native code. The protection is activated in the preamble
of the protected code, together with the Time-Check or the Self-Debugging protection.

Finally, it is worth highlighting that our Java anti-debugging protection is not mutually exclusive
with those already existing, e.g., obfuscation and tampering detection. Instead, different protections
can be used complementarily and synergize to increase the overall defenses of the application, as
discussed in [21].

5.2 Damaging the Java Debugger Back-end
As explained in Section 3.1, the back-end module of the JPDA is typically implemented at native
level with shared libraries. Therefore, the first step for detecting a debugging attempt is to look for
artifacts in memory that may reveal the presence of a debugger.

In our prototype implementation, we consider Linux with the OpenJDK38 JVM (Java 11), however
other systems are not conceptually different. By scanning the native libraries mapped in memory
of a Java application under debugging (i.e., by checking the /proc/pid/maps file), we observe
the presence of the libjdwp.so and libdt_socket.so libraries, as shown in Section 5.2. The
first library loads the back-end, while the second library is related to the communication channel
(sockets, in this case) with the front-end.

Each library is mapped in regions of contiguous virtual memory. These regions may have read
(r), write (w) and execute (x) permissions, expressed by the first three flags at the beginning of
the rows. If a process attempts to access a location in memory in a way that is not permitted, a
segmentation fault error is generated. The fourth flag (p) stands for “private”, meaning that the
memory region is not shared and is instead a copy of the original code (i.e., the original shared
library). In particular, the libjdwp.so library is mapped in four different regions:

38https://openjdk.java.net/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://openjdk.java.net/

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:25

Fig. 10. The partial content of the /proc/pid/maps file of a Java application being debugged

• the first region has read and execute permissions, and it contains the actual code of the
back-end;

• the second region does not have any permission. Mainly, this region is created as a guard
against buffer overflows and to protect any possible gaps between memory regions;

• the third region has read-only permission, and it contains read-only data like constant values;
• the fourth region has read/write permissions, and it contains dynamically allocated data.

To prevent the correct functioning of the Java debugger, we propose to act on the virtual memory
regions of the back-end submodule. We note that randomly tampering with read-only data or
dynamic variables may disrupt and crash the debugger, revealing the presence of the anti-debugging
protection. Therefore, our approach consists in corrupting the memory region of the libjdwp.so
library containing the executable code. In particular, we first obtain write permissions on the first
memory region by using the mprotect39 system call. Then, we overwrite specific bytes of the
library code segments with the 0xC3 opcode, that corresponds to a return instruction in the x86
Instruction Set Architecture (ISA). In particular, we replace the first instruction of each function
with the 0XC3 opcode. In this way, the back-end will immediately return without actually executing
any code. While this approach works for x86-based processors only, it is very easy to include
support for other ISA (i.e., change the specific return opcode) which only requires engineering
effort.
When running a Java program protected with Back-end Damaging anti-debugging protection,

the debugger front-end seems to operate fine without raising any error. However, commands sent
by the debugger front-end are not actually executed by the debuggee back-end. For instance, while
a breakpoint seems to have been successfully set by the front-end, the execution of the application
is not suspended when the breakpoint is reached, causing the debugging infrastructure to be useless
for an attacker.

6 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation aimed at assessing our anti-debugging
protections, that protect either the C level with Time-Check and Self-Debugging (see Section 4)
and the Java level with Back-end Damaging (see Section 5). Below, we formulate three research
questions to guide the definition of our experimental settings (Section 6.1). Then, we identify
9 debugging tasks (Section 6.2) encompassing malicious reverse engineering activities (e.g., set

39https://www.man7.org/linux/man-pages/man2/mprotect.2.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://www.man7.org/linux/man-pages/man2/mprotect.2.html

1:26 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

breakpoints, modify variables and registers) along with a set of metrics to measure experimental
data (Section 6.3). We present our case studies (Section 6.4) and give an overview of the procedure
we followed during the evaluation (Section 6.5). Finally, we conclude by answering each of the
research questions based on the data collected from the experimental evaluation (Sections 6.6 to 6.8).
We publish the complete replication package40 to allow replicating the experimental evaluation
with our (or, maybe, with different) anti-debugging protections. In detail, the replication package
contains all the case study applications with their source code, test cases and build scripts (and also
the already compiled .jar files for ease of use); the completely automated experiment including
annotation, compilation, testing, protection and execution of debugging tasks on case studies with
the collection of all the experimental results.
It is worth noting that, in our experimental evaluation, there is no direct comparison with the

previous work done by Abrath et al. [2] [1] due to the different applicability domains of the two
tools. Despite both tools target compiled C code, their tool requires plain C code, while ours exploits
the structure of the JVM and thus can work only in JNI code generated by Java2C. Conversely,
their tool is based on the fork primitive to start the debugging process, that, according to our
preliminary investigation, is not working in a JNI environment.
Similarly, our Java-level anti-debugging protection cannot be compared with the debugger

detection approaches discussed in Section 2.1, as they just detect debuggers, but they do not
actually block any debugging-related capability. In other words, all debugging tasks we identified
would succeed. Moreover, the two proactive anti-debugging protections proposed in [11, 24] are
not relevant, as they rely on obsolete technologies and techniques (i.e., manipulating the gDvm
global variable exposed by the Dalvik Virtual Machine) and are thus not deployable anymore.

6.1 ResearchQuestions
We formulate three research questions to guide our experimental evaluation:

• 𝑅𝑄1: What is the resiliency of the anti-debugging protections?
• 𝑅𝑄2: What is the robustness of the anti-debugging protections?
• 𝑅𝑄3: What is the overhead of the anti-debugging protections?

The first research question aims at measuring the extent to which our anti-debugging protections
ward the protected code against automated debugging tools. The second research question investi-
gates the impact of the protections on the functionality of the protected code. In other words, we
assess whether the protections compromise the correct execution of the protected code. The third
research question measures the computational overhead of the protections in terms of execution
time.

6.2 Debugging Tasks
To evaluate our anti-debugging protections, we automate the execution of several debugging tasks
(see Table 2) that are supported by common debuggers. These concrete debugging tasks can be seen
as the building blocks for the abstract strategies and activities that attackers adopt while performing
malicious reverse engineering [9]. In detail, we identify 9 debugging tasks that map to commands
available in Java Debugger (JDB)41 and GDB42. Although executed differently, some Java and native
debugging tasks are similar in objectives. In particular, we define 4 common debugging tasks, 2
tasks at Java-level only and 3 tasks at native-level only, for a total of 9 distinct tasks. With the only
exception of the Attach debugging task, which is executed when launching the application, all the

40https://github.com/stfbk/Mitigating-Debugger-based-Attacks-to-Java-Applications-with-Self-Debugging
41https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
42https://visualgdb.com/gdbreference/commands/)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/stfbk/Mitigating-Debugger-based-Attacks-to-Java-Applications-with-Self-Debugging
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
https://visualgdb.com/gdbreference/commands/)

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:27

Table 2. Java and Native Level Debugging Tasks

Task Name Level
Java Native

Attach Attach to the program prior runtime Attach to the program prior runtime

Set breakpoint
Reach a breakpoint after the protected code has been
invoked (i.e., in the java.lang.System.exit func-
tion)

Reach a breakpoint at the beginning of the protected
code

Stepping Step among instructions after the protected code has
been invoked

Step among instructions of the protected code

Show call stack Print the Java call stack after the protected code has
been invoked

Print the call stackwhen inside the protectedmethod

Show variables Print the values of all local variables after the pro-
tected code has been invoked -

Trace output Trace method entries and exits before and after the
protected code have been invoked -

Show registers - Displays the contents of all processor registers

Set watchpoint -
Set a watchpoint for an expression (i.e., the debug-
ger stops the execution whenever the value of the
expression changes)

Set register - Set the value of an expression or a register

Java-level tasks are executed after the Java anti-debugging protection has been activated, i.e., after
the protected code has been invoked. Conversely, native-level tasks are executed on the protected
code.We automate the execution of debugging tasks by implementing a wrapper sending commands
to the GDB and JDB tools and observing the resulting output. Hence, a debugging task consists of a
list of commands to send to the (either Java or native) debugger along with the debugger’s expected
output. For instance, the JDB command “stop in com.example.ClassName.methodname” expects
as output “Set breakpoint com.example.ClassName.methodname”, while any other output (e.g.,
“Deferring breakpoint com.example.ClassName.methodname”) is considered as a failure.

6.3 Metrics
To answer the research questions, we define the following metrics to apply to the data resulting
from the evaluation:

• Protection Resiliency - The number of debugging tasks that succeed when an anti-debugging
protection is applied;

• Functional Correctness - The number of JUnit tests that passwhen an anti-debugging protection
is applied;

• Running Time - The average duration and standard deviation of JUnit test cases on the original
code (i.e., unprotected) and when an anti-debugging protection is applied.

6.4 Case studies
For our empirical validation, we collected open-source Java projects from GitHub.43 In detail, we
consider only projects which were starred by more than 1,000 GitHub users to choose popular and
widely adopted projects which, even though not for sure, we expect to be more thoroughly and
well-tested and of higher quality. Here, by high-quality projects we mean those that compile and
run out-of-the-box, with no custom compilation or configuration process, that would have caused
expensive manual overhead in our experiment.

43https://github.com/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/

1:28 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

Table 3. Case Studies

Name Description Stars Test Successful Failed
Classes Tests Tests

Apache Avro™ A data serialization system 1607 81 3159 40
CommaFeed Google Reader inspired self-hosted RSS reader 1710 10 21 30
Apache Commons Lang Utilities for classes in java.lang’s hierarchy 1925 180 5868 58
docker-maven-plugin Maven plugin for managing Docker images 1319 82 228 139
google-java-format Ensure compliance with Google Java Style 3325 19 699 374
Jimfs An in-memory file system for Java 7 and above 1787 50 5518 177
jsoup Library for working with real-world HTML 7941 53 726 21
Uber JVM Profiler Java Agent to collect metrics and stacktraces 1315 24 64 0
logback A successor to the popular log4j project 1875 194 452 59
PF4J Make monolithic applications modular 1123 45 65 21
poi-tl Generate word(docx) documents with template 1325 84 53 39
Pushy Library for sending APNs push notifications 1185 28 286 52
ScribeJava The simple OAuth client Java lib 5040 24 95 5
Soot A Java optimization framework 1441 102 40 122
Traccar An open-source GPS tracking system 2390 328 30 318
Truth Make test assertions and messages readable 2081 328 1278 8
Webcam Capture API Use built-in or external webcams in Java 1707 15 13 26
Web Magic A scalable crawler framework 9001 22 23 23

For each project, we downloaded the source code and the test cases. Then, we kept only projects
with at least 30 JUnit tests to exclude projects with poor test coverage which would not fit our
experimental settings, that rely on test cases to collect experimental data. We collected these projects
during the first three months of 2021, as that was the time during which we ran the experimental
evaluation.

In the end, our data set consists of 18 case studies comprising 18.618 successfully running JUnit
tests. We report the case studies along with relevant information (e.g., link, name, description,
number of stars, number of JUnit tests) in Table 3.

6.5 Experimental procedure
The experimental evaluation consists of two phases (i.e., configuration and experiments) which we
describe in detail below. The two phases have been scripted and the scripts are available, together
with the results of the experimental evaluation and the code of the anti-debugging protections, in
our GitHub repository as replication packages.

Configuration. The configuration is run on each case study according to these steps:
• Analysis: the JUnit test cases are executed on the original unprotected application code. Tests
that failed to execute (due to, e.g., missing dependencies or external modules) are filtered
out (i.e., removed from the case study source code). Then, only successful tests are run again
with JaCoCo44 to collect code coverage at the method level. In other words, for each method,
we collect the percentage of instructions executed while running the (successful) tests.

• Annotation: among the case study methods whose code coverage is at least 70%, we pick
the one with the longest body, i.e. the method with the highest number of statements. This
method is annotated as requiring anti-debugging protection. In this way, we protect the
longest method, and we skip trivially short ones whose code is largely covered by tests.

44https://www.eclemma.org/jacoco/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/apache/avro
https://github.com/Athou/commafeed
https://github.com/apache/commons-lang
https://github.com/fabric8io/docker-maven-plugin
https://github.com/google/google-java-format
https://github.com/google/jimfs
https://github.com/jhy/jsoup
https://github.com/uber-common/jvm-profiler
https://github.com/qos-ch/logback
https://github.com/pf4j/pf4j
https://github.com/Sayi/poi-tl
https://github.com/jchambers/pushy
https://github.com/scribejava/scribejava
https://github.com/Sable/soot
https://github.com/traccar/traccar
https://github.com/google/truth
https://github.com/sarxos/webcam-capture
https://github.com/code4craft/webmagic
https://www.eclemma.org/jacoco/

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:29

• Transformation: The chosen method is translated from Java to native code by Java2C [31],
and protected with either the Self-Debugging or the Time-Check anti-debugging native-level
protection. The Back-end Damaging anti-debugging Java-level protection is always added to
the code and invoked at the beginning of the protected method. This implies that the tool
allows evaluating two pairs of anti-debugging protections, i.e., Back-end Damaging-Time-
Check and Back-end Damaging-Self-Debugging.

Experiments. The experiment includes the evaluation of the robustness, resiliency and computa-
tional overhead of our anti-debugging protections:

• Protections Resiliency - debugging tasks are applied on at most 10 JUnit tests among the
successful JUnit tests which execute the protected method. In other words, we launch at most
10 tests trying then to complete each of the debugging tasks defined in Table 2. Debugging
tasks are attempted both on the original unprotected application and the new protected
application code. During this phase, the outcome of the debugging task is collected as either
success or failure. Only 10 test cases are executed to limit the amount of time taken by this
step, because some debugging tasks (e.g., stepping execution) take up to several hours to
complete, depending on the length of the protected method.

• Functional Correctness - we identify the subset of successful JUnit tests which execute the
method to protect. Then, we run these tests on both the original unprotected application
code and the protected application code to check if their functional correctness still holds;

• Running Time - the running time of the JUnit tests is extracted from the JUnit reports, to
measure the computational overhead caused by the anti-debugging protections. To reduce
measurements errors, tests are run 100 times;

6.6 RQ1 - Analysis of Resiliency
Java-level anti-debugging Protection Resiliency. Table 4 reports the results of the execution of

Java-level debugging tasks on both the original code and the code protected with the Back-end
Damaging anti-debugging protection. From the table, we note that all debugging tasks execute
successfully on the original code. Instead, the only debugging task that executes successfully on the
protected code is the “Attach” task. Indeed, as explained in Section 6.2, the Java debugger attaches
to the application before the anti-debugging protection is applied. However, when the protection is
applied, the commands sent by the front-end debugger are not executed by the back-end.

Native-level anti-debugging Protections Resiliency. Table 5 reports the results of the execution
of native-level debugging tasks on the code protected with the Time-Check and Self-Debugging
anti-debugging protections. We recall that the tool applies only one of these two protections at a
time, i.e., we test each native-level anti-debugging protection separately.

Regarding the Time-Check protection, from Table 5 we note how almost all debugging tasks still
have a success rate of more than 90%. The only notable exception is the “Stepping” task (success
rate of 9.84%) which, since stepping through the protected code, takes more time to execute than
the other tasks and is more likely to trigger the Time-Check protection.

Regarding the Self-Debugging protection, we note the success of some “Set Breakpoint” debugging
tasks (i.e., 14 on 132) and the success of all “Set Watchpoint” and “Set Register” debugging tasks. We
manually investigate these results, concluding that all the successful “Set Breakpoint” debugging
tasks are actually false positives. These false positives are due to the subtle approach of the Self-
Debugging protection described in Section 4. In detail, when debugging the protected method, the
Self-Debugging protection blocks its execution and simply returns 0. However, we found that in
some JUnit tests (i.e., those corresponding to the false positives “Set Breakpoint” debugging tasks),

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:30 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

Table 4. RQ1 - Java-level anti-debugging - JDB Debugging Tasks on Original and Protected Code

Case Study Original Code Protected Code

N
um

be
ro

fT
es
ts

A
tta

ch

Se
tB

re
ak
po

in
t

St
ep
pi
ng

Sh
ow

Ca
ll
St
ac
k

Sh
ow

Va
ria

bl
es

Tr
ac
e
O
ut
pu

t

A
tta

ch
Se
tB

re
ak
po

in
t

St
ep
pi
ng

Sh
ow

Ca
ll
St
ac
k

Sh
ow

Va
ria

bl
es

Tr
ac
e
O
ut
pu

t

Apache Avro™ 10 10 10 10 10 10 10 10 0 0 0 0 0
CommaFeed 4 4 4 4 4 4 4 4 0 0 0 0 0
Apache Commons Lang 10 10 10 10 10 10 10 10 0 0 0 0 0
docker-maven-plugin 10 10 10 10 10 10 10 10 0 0 0 0 0
google-java-format 8 8 8 8 8 0 8 8 0 0 0 0 0
Jimfs 6 6 6 6 6 6 6 6 0 0 0 0 0
jsoup 10 10 10 10 10 10 10 10 0 0 0 0 0
Uber JVM Profiler 10 10 10 10 10 10 10 10 0 0 0 0 0
logback 9 9 9 9 9 9 9 9 0 0 0 0 0
PF4J 10 10 10 10 10 10 10 10 0 0 0 0 0
poi-tl 10 10 10 10 10 10 10 10 0 0 0 0 0
Pushy 10 10 10 10 10 10 10 10 0 0 0 0 0
ScribeJava 5 5 5 5 5 5 5 5 0 0 0 0 0
Soot 2 2 2 2 2 2 2 2 0 0 0 0 0
Traccar 4 4 4 4 4 4 4 4 0 0 0 0 0
Truth 10 10 10 10 10 10 10 10 0 0 0 0 0
Webcam Capture API 3 3 3 3 3 3 3 3 0 0 0 0 0
Web Magic 1 1 1 1 1 1 1 1 0 0 0 0 0
Sum of Successful Tasks - 132 132 132 132 132 132 132 0 0 0 0 0
% of Successful Tasks - 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 0%

the protected method incidentally returns the same value as expected by the JUnit test to succeed.
In other words, the JUnit test succeeds even if the protected method does not really execute. The
successes on the “Set Watchpoint” and “Set Register” debugging tasks are due to the fact that these
tasks are executed immediately before the protected method is invoked (i.e., before the protection
is applied). Afterward, the protection detects the debugging attempt and stops the execution of
the protected method, making the watchpoints and the set register commands pointless. For this
reason, we consider these successes to be false positives as well.
RQ1 answer - the resiliency of the Back-end Damaging Java-level anti-debugging protection is
100%, while the resiliency of the Time-Check and Self-Debugging Native-level anti-debugging
protections is (on average) of 19% and 100%, respectively.

6.7 RQ2 - Analysis of Robustness
Table 6 reports the results of the execution of JUnit tests on the original (unprotected) application
code and the protected code. From the table, we see that the Back-end Damaging and the Self-
Debugging anti-debugging protections do not impact the functional correctness of the protected
method. Instead, the Time-Check protection causes almost 10% of JUnit tests to fail. After inspecting
the logs that are generated during the executions of the JUnit tests, we note that the failures are
due to the Time-Check protection. Indeed, the logs reveal that the Time-Check protection detected
a debugging attempt, even though no debugging activity was being performed. The main reason
behind this problem is that the time taken by the protected method to execute (without any
debugging attempt) is longer than the threshold set for the Time-Check protection, so the default

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:31

Table 5. RQ1 - Native-level anti-debugging - GDB Debugging Tasks on Code Protected with Time-Check and
Self-Debugging

Case Study Code Protected with Time-Check Code Protected with Self-Debugging

N
um

be
ro

fT
es
ts

A
tta

ch

Se
tB

re
ak
po

in
t

Sh
ow

Ca
ll
St
ac
k

St
ep
pi
ng

Sh
ow

Re
gi
st
er
s

Se
tW

at
ch
po

in
t

Se
tR

eg
is
te
r

A
tta

ch

Se
tB

re
ak
po

in
t

Sh
ow

Ca
ll
St
ac
k

St
ep
pi
ng

Sh
ow

Re
gi
st
er
s

Se
tW

at
ch
po

in
t

Se
tR

eg
is
te
r

Apache Avro™ 10 10 10 9 0 10 10 10 10 0 0 0 0 10 10
CommaFeed 4 4 4 4 0 4 4 4 4 2 0 0 0 4 4
Apache Commons Lang 10 10 10 10 1 10 10 10 10 1 0 0 0 10 10
docker-maven-plugin 10 10 10 10 0 10 10 10 10 6 0 0 0 10 10
google-java-format 8 8 0 0 0 0 8 8 8 0 0 0 0 8 8
Jimfs 6 6 6 6 2 6 6 6 6 0 0 0 0 6 6
jsoup 10 10 10 10 0 10 10 10 10 0 0 0 0 10 10
Uber JVM Profiler 10 10 9 10 1 10 10 10 10 3 0 0 0 10 10
logback 9 9 9 9 0 8 9 9 9 0 0 0 0 9 9
PF4J 10 10 10 10 7 10 10 10 10 0 0 0 0 10 10
poi-tl 10 10 10 9 0 10 10 10 10 0 0 0 0 10 10
Pushy 10 10 10 10 0 10 10 10 10 0 0 0 0 10 10
ScribeJava 5 5 5 5 0 5 5 5 5 0 0 0 0 5 5
Soot 2 2 2 2 0 2 2 2 2 1 0 0 0 2 2
Traccar 4 4 4 4 0 4 4 4 4 0 0 0 0 4 4
Truth 10 10 10 9 1 10 10 10 10 0 0 0 0 10 10
Webcam Capture API 3 3 3 3 1 3 3 3 3 0 0 0 0 3 3
Web Magic 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1
of Successful Tasks - 132 123 121 13 123 132 132 132 14𝑎 0 0 0 132𝑎 132𝑎

% of Successful Tasks - 100% 93.18% 91.66% 9.84% 93.18% 100% 100% 100% 10.60% 0% 0% 0% 100% 100%

𝑎False positives;

threshold is not appropriate. A different threshold value should be set by the developer that can
better estimate the expected execution time.
RQ2 answer - the robustness of the Back-end Damaging Java-level anti-debugging protection is
100%, while the robustness of the Time-Check and Self-Debugging Native-level anti-debugging
protections is 91% and 100%, respectively.

6.8 RQ3 - Analysis of Overhead
Table 7 reports the increase in the running time of JUnit tests between the original and protected
code. Note that we measure the overhead of the Back-end Damaging anti-debugging protection
together with either the Time-Check or the Self-Debugging anti-debugging protection. In fact,
Java-level and (one of the two) Native-level protections should always be used together to guarantee
an adequate level of protection against malicious debugging attempts.
From the table, we see that the Back-end Damaging-Time-Check anti-debugging protections

pair causes an average overhead of a few milliseconds at worst. The average increase of time in
percentage indicates that protected code executes 3 times slower than unprotected code. This
overhead includes both the time taken by the protections and the fact that the method is translated
from Java to Native code. Regarding the Back-end Damaging-Self-Debugging anti-debugging
protections pair, the average overhead is almost three seconds, with a peak of more than ten seconds.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:32 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

Table 6. RQ2 - Successful Tests After an Anti-Debugging Protection was Applied

Ca
se

St
ud

y

N
um

be
ro

fT
es
ts

N
o
Pr
ot
ec
tio

n

Ba
ck
-e
nd

D
am

ag
in
g

Ti
m
e-
Ch

ec
k

Se
lf-
D
eb
ug

gi
ng

Apache Avro™ 97 97 97 83 97
CommaFeed 4 4 4 4 4
Apache Commons Lang 25 25 25 24 25
docker-maven-plugin 11 11 11 11 11
google-java-format 8 8 8 6 8
Jimfs 6 6 6 6 6
jsoup 14 14 14 13 14
Uber JVM Profiler 10 10 10 10 10
logback 16 16 16 13 16
PF4J 12 12 12 10 12
poi-tl 37 37 37 0 37
Pushy 24 24 24 23 24
ScribeJava 5 5 5 5 5
Soot 11 11 11 11 11
Traccar 4 4 4 4 4
Truth 505 505 505 497 505
Webcam Capture API 3 3 3 3 3
Web Magic 1 1 1 0 1
Sum of Successful Tests - 793 793 723 793
% of Successful Tests - 100% 100% 91.17% 100%

The average increase of time in percentage indicates that protected code executes hundreds of
thousands of times slower than unprotected code.
RQ3 Answer - the overhead of the Back-end Damaging-Time-Check anti-debugging protections
pair is of 5.82 milliseconds on average (an increase of around 350% with respect to the unprotected
code), with a maximum of 5.06 milliseconds and a minimum of 0.01 milliseconds. The overhead
of the Back-end Damaging-Self-Debugging anti-debugging protections pair is of 2.85 seconds on
average (an increase of around 340,000% with respect to the unprotected code), with a maximum
of 13.8 seconds and a minimum of 9.4 milliseconds.

7 DISCUSSION
In this section, we present a discussion on the results of the empirical assessment, limitations of
the proposed protections (Section 7.1), possible attacks and mitigation strategies (Section 7.2) and
threats to validity (Section 7.3).
Our approach to limit malicious debugging proved to achieve high resiliency in blocking most

of the debugging tasks that a common debugger is supposed to support. At the same time, no
malfunction nor undesired side effect is added as a consequence of anti-debugging (provided that a
reliable estimation is available for code execution time), which suggest the large applicability of
our approach.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:33

Table 7. RQ3 - Average Increase in Time After anti-debugging Protections were Applied (in seconds)

Case Study Back-end Damaging-Time-Check Back-end Damaging-Self-Debugging

Av
g.
Ti
m
e
In
cr
ea
se

%
Av

g.
Ti
m
e
In
cr
ea
se

Av
g.
Ti
m
e
In
cr
ea
se

%
Av

g.
Ti
m
e
In
cr
ea
se

Apache Avro™ 0.00348 850.07151 1.47115 656529.84206
CommaFeed 0.00073 1.34592 0.25817 111.14308
Apache Commons Lang 0.00319 265.21143 9.76244 667,808.49008
docker-maven-plugin 0.00011 0.99954 0.09404 99.95265
google-java-format 0.05062 78.61165 13.80167 25,224.10695
Jimfs 0.00182 129.99639 3.70568 282,501.45419
jsoup 0.00059 30.97813 1.39990 55,391.69714
Uber JVM Profiler 0.00092 866.03615 1.84341 1,760,604.30882
logback 0.00046 15.06699 0.57712 17,425.56170
PF4J 0.00072 9.11208 1.52946 16,934.09078
poi-tl 0.00017 3.12915 0.61584 493.51491
Pushy 0.00045 322.65856 1.60390 215,014.51724
ScribeJava 0.00073 660.14571 1.02596 303,335.36074
Soot 0.00019 25.68404 0.18854 11,874.65119
Traccar 0.00087 3,022.93563 1.03786 2,041,853.45912
Truth 0.00074 28.25344 2.70142 93,664.23941
Webcam Capture API 0.00040 3.80386 2.01817 34,979.51507
Web Magic 0.03859 30.68055 7.59732 5,574.37816
Average Increase 0.00582 352.13680 2.84622 343,856.68240

7.1 Maximizing Resiliency
Despite automating most of the transformation to the point that the user is required to use a single
Java annotation, some considerations can be made about which methods to protect. In fact, like
any other protection, ours do not come for free and carefully placing the required Java annotation
may increase the speed or the resilience of the protection.

Non-negligible performance overhead The execution time of an application might increase
depending on the deployed protection and the amount of protected code. However, whether the
execution overhead is acceptable for end users depends on the specific context of the application at
hand. Indeed, it is up to the developers to strike the best possible balance between security and
performance, evaluating on a case-by-case basis which is the most appropriate protection (and
its configuration) for the requirements of their application; this is a cost-benefit analysis that the
developers should carry out using our quantitative evaluation as a guideline.
When to activate java-level protection The Back-end Damaging Java-level anti-debugging

protection described in Section 5 has 100% resiliency only after the protection is applied, i.e., after
the protected method is executed. Indeed, as shown in Table 4, the “Attach” debugging task always
succeeds. This limitation implies that a malicious reverse engineer has control over the application
until the protected method is invoked, and can thus manipulate the inputs of such a method.
Nonetheless, we note that the attacker cannot observe the output of the method. A possible solution
to this limitation is to apply the Back-end Damaging protection at the startup of the application, at
the cost of making the protection less subtle. The most appropriate point where to activate this

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:34 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

protection should be decided by the developers, based on the security requirements of the Java
application to protect.

Time threshold calibration is crucial The results in Table 5 show that the Time-Check anti-
debugging protection has limited resiliency (less than 10%). Although these results are also due to
the fact that all debugging tasks were automated (i.e., they often executed too quickly to be detected
by the protection), we note that the resiliency of the Time-Check protection largely depends on the
debugging activity being performed and the time threshold triggering the protection. Therefore,
the threshold should be fine-tuned according to the length and complexity of the protected method.
For instance, a developer might compute an accurate value of this threshold by measuring the
execution time of his/her code in worst-case scenarios.

Input data Vs output data protection The “Set watchpoint” and the “Set register” debugging
tasks always succeed despite the Self-Debugging anti-debugging protection. Indeed, these tasks
were performed at the beginning of the protected method, i.e., before the protection was actually
applied. The results in Table 5 prove that, while not being able to modify registers during the
execution of the protected method, a malicious reverse engineer could still modify the inputs of
the protected method. However, as for the Back-end Damaging protection, the attacker is not able
to inspect the corresponding output.

Default return value as discussed in Section 6.6, the “Set breakpoint” debugging task for the
Self-Debugging anti-debugging protection has 14 false positives. This is due to the Self-Debugging
protection returning the default value of 0 when detecting a debugging attempt. However, as the
value 0 represents a successful execution, it may be desirable to adjust the return value depending
on the method chosen to be protected.
Code injection for anti-debugging Currently, the Back-end Damaging protection just over-

writes the first opcode of the back-end submodule library code. A possible improvement is to
elaborate on this concept by injecting snippets of more meaningful code, aiming at disrupting the
Java debugger even more, e.g., by sending reply packets containing wrong information.

7.2 Possible Attacks
Although the scope of this paper is debugger-based attacks, other attacks at different levels (e.g., at
the operating system level) could represent a threat. Even if anti-debugging is not meant to mitigate
these attacks—hence they are clearly out of the scope of anti-debugging—it is worth discussing them
to explain why different complementary protections (such as remote attestation, anti-tampering
and obfuscation) need to be deployed together with anti-debugging, to protect each other.
Malicious JPDA module As explained in Section 3.1, the JPDA is highly modular. Therefore,

a malicious reverse engineer could replace the modules of the Oracle reference implementation
with custom modules at any interface level. Although the main idea of the Back-end Damaging
Java-level anti-debugging protection (i.e., replace the first opcode of every function with a return
opcode) should theoretically be resilient with custom implementations of the back-end submodule
as well, further investigations and experiments should be conducted. Moreover, we note that it is not
difficult to look for revelatory strings (e.g., “maps”, “proc”) and system calls (e.g., mprotect) through
static analysis. Despite these calls being protected from patching attacks in self-debugging, as
shown in Section 4.5.2, a malicious reverse engineer could still try and circumvent some of them and
bypass the application of the Back-end Damaging protection that is applied before self-debugging,
thus exposing at least the Java part to debugging. This possible attack highlights the need to couple
anti-debugging protections with other techniques such as obfuscation, anti-tampering or remote
attestation, to certify that the original JPDA modules are running and not those tampered with by
the attacker.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:35

Attacking process authentication Despite protecting both the JNI and the OVM processes
against debugging, as described in Section 4, some attacks against the native protection are still
possible. In particular, we showed in Section 4.6.2 a possible Man-in-the-Middle attack that is not
particularly difficult to set up and has the potential of completely deactivating the native protection.
We protected against this type of attack by using an AES key, effectively moving the problem from
protecting the JNI and the OVM processes to protecting this encryption key.
Although meant to avoid scenarios where an attacker could simply patch away portions of

the anti-debugging protection by replacing the relevant instructions with NOOP operations, our
protection is meant to be integrated with other protections techniques that are capable of statically
obfuscating the code. In fact, if the attacker retrieves the AES key used to authenticate the message
exchange between JNI and OVM, the attacker can impersonate the other process and spoof all the
messages exchanged between the two processes, with the attack shown in Section 4.6.2.

Another potential attack point is the OTP key generation. As described in Section 4.6.1, the entire
communication between JNI and OVM is encrypted with a key generated half by one process and
half by the other process, and written directly to the companion process via debug calls. An attacker
could dump the memory of the processes, store the entire communication, and later retrieve the
key and decrypt the messages. The challenges of this attack are finding the correct decryption
key in the dumped memory, and capturing all the communication if the domain socket is abstract
(abstract sockets do not exist in the filesystem). Moreover, after decrypting the messages, their
semantics still needs to be inferred by reversing the OVM ISA.

Reversing the protectionGiven the open source nature of Java2C and conceal.it, an attacker
may potentially write an “unconceal.it” tool that attempts to automatically revert back the protected
code to the original Java. To make such a tool automated (it is a sort of decompiler), it is necessary
to guess the OVM ISA that is never reused because it is randomly generated when our protection is
applied. Opcode guessing is a task in attacking virtual-machine based obfuscations, and to solve it is
necessary to reverse engineer the virtual-machine itself [32]. This could be done either dynamically
using debugging [16], which is turned harder by our protection, or statically by static analysis.
The latter case is the reason why our approach should be integrated with a strong static code
obfuscation technique. In addition, this decompiler should deal with the strongly optimized JNI
and OVM binaries.
Malicious Java Virtual Machine In our study, we are assuming that the JVM used in the

system is genuine. However, a particularly determined attacker, may re-implement the JVM and
debug the JVM itself, as opposed to the JNI layer, to extract some information about the obfuscated
method. This is possible because, despite the communication between JNI and OVM is obfuscated,
the JNI layer still needs to exchange data with the JVM layer. In particular, all the tasks involving
objects allocation, fields access and methods invocation, are performed by the JVM layer.

An attacker using a malicious JVM implementation may leak and obtain information about these
method calls and allocations, effectively lowering the resilience of the native obfuscation. However,
moving these allocation and method invocation tasks to the JNI layer would require essentially
moving most (or all of) the application from Java to C. Another option would be to use a modified
JVM implementation encrypting the channel between the JNI and the JVM in the same way the
channel between the JNI and the OVM is encrypted.
As a final remark, although professional hackers may reuse reverse engineering tools they

developed (e.g., custom re-implementations of the JVM) to reduce the overall cost of attacking
(Java) applications, it is worth noting that implementing such tools—and adapt them for use in
different environments—is not a trivial task and may still require considerable effort.

Malicious Kernel The core idea of our anti-debugging obfuscation relies on the fact that only a
single process can debug another process. However, if this is not the case, an attacker would be able

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:36 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

to attach a second debugger to the protected processes. Given that, to the best of our knowledge,
every operating system allows a single process to debug another process, an attacker needs to write
a custom kernel to attack the protection by exploiting the ptrace. Also in this case, the cost that a
malicious reverse engineer would sustain to write and debug its own kernel may be even higher
than the value of a successful attack.

7.3 Threats to Validity
Here, we summarize those threats that limit the validity of our results, divided into threats to
internal and external validity.

Threats to Internal Validity: Considering that the translation from Java bytecode to C source
code is addressed using an existing tool, namely Java2C, verifying the semantic equivalence
between original and translated code is out of the scope of the present paper and delegated to the
Java2C paper [30]. Nonetheless, we acknowledge that any error in the translation would result in
a defective anti-debugging protection. To mitigate this threat, we resorted to software testing to
spot semantic deviations in the protected code. However, some defects could still be present in the
translated code that might be overlooked by test cases.

In the empirical validation, we decide which method to annotate and protect by choosing methods
with high test coverage (> 70%) and far from trivial (with the highest number of statements).
However, these methods might not be the most relevant from a security viewpoint. A more
appropriate annotation should be based on the security requirements of each case study that were,
however, not available to us. Anyway, considering the objective of our experiment, our annotation
strategy is still sound, because it allows us to measure protection impact on code correctness and
on the resiliency with respect to common debuggers debugging tasks.
While the objective of translating part of the Java code to C code is to implement a barrier to

malicious reverse engineering with anti-debugging, this introduces an interface that might be an
evident starting point for an attacker. However, even if an interface is there, still it would be hard
for an attacker to analyze it. In fact, (𝑖) malicious dynamic analysis is mitigated by anti-debugging
and (𝑖𝑖) static analysis is known to be much harder [17, 20] on multi-language programs (e.g., Java
and C) than single language programs (e.g., Java only) even if source code is provided. In our
context, source code would not be available. Moreover, our anti-debugging solutions are meant to
be complemented by code obfuscation as an additional barrier to malicious reverse engineering.
Threats to External Validity: Despite considering a set of 18 open-source Java projects with

more than 1,000 stars on GitHub and at least 18 test cases each to assess our approach from
different domains, they are all open-source projects and they might not be representative of all
the potential software systems that might benefit from anti-debugging. Only replications with
different software, e.g., commercial closed-source programs, can prove or disprove our observations.
Assessing anti-debugging with Android apps is indeed on our research agenda.

Our experimental validation has been conducted on a limited list of debugging tasks. Even
if we filled this list by considering all the commands available in common debugging tools (i.e.,
JDB and GDB), this list might be incomplete and attackers might consider other tasks, possibly
implementing their own custom debugger. However, new debugging features would still require a
debugger to attach to the process under attack, so it is unlikely that they would succeed when our
Self-Debugging protection is deployed to actively engage the process debugging slot.

8 CONCLUSION
Previous empirical investigation has shown that, when sensitive code is obfuscated to prevent
malicious reverse engineering, attackers do not attempt to statically undo obfuscation, but typically
opt for dynamic analysis based on debuggers. This paper presented a novel approach to protect Java

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:37

programs from malicious debugging. First, the compiled Java bytecode is automatically translated
to C code. Then, based on the expected style and structure of this translated C code, automated
code transformation is applied to split data access from computation into two distinct processes
that, to guarantee correct program execution, must be executed simultaneously. Additionally, each
of these two processes attaches as a debugger to the other process to engage its debugging interface,
which is no longer available to the attacker to attach her/his own malicious debugger. The two
processes share an encoded communication channel and adopt a custom authentication protocol to
prevent the attacker to replace one of them or to intercept their communication in plaintext.

While our empirical assessment shows our protection to be resilient against standard (either Java
or C) debuggers, as future work we plan to experiment with custom debuggers, e.g., based on QEMU
or virtualization infrastructures, such as hypervisors. We plan to extend our approach to address the
potential new threats coming with these additional contexts and technologies. Moreover, as already
established in the literature, we plan to involve professional attackers and run public challenges to
study to what extent our protection is effective in practice in the field.

ACKNOWLEDGMENTS
This work has been partially supported by the MIUR "Dipartimenti di Eccellenza: Informatica
per Industria 4.0” 2018-2022 grant. Stefano Berlato has been partially supported by "Futuro &
Conoscenza Srl", jointly created by FBK and the Italian National Mint and Printing House (IPZS).
Davide Pizzolotto has been supported by JSPS KAKENHI grant number 18H04094.

REFERENCES
[1] Bert Abrath, Bart Coppens, Ilja Nevolin, and Bjorn De Sutter. 2020. Resilient Self-Debugging Software Protection. In

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 606–615.
[2] Bert Abrath, Bart Coppens, Stijn Volckaert, Joris Wijnant, and Bjorn De Sutter. 2016. Tightly-coupled self-debugging

software protection. In Proceedings of the 6th Workshop on Software Security, Protection, and Reverse Engineering -
SSPREW ’16 (2016). ACM Press, 1–10. DOI:http://dx.doi.org/10.1145/3015135.3015142

[3] Alexander Sprogø Banks, Marek Kisiel, and Philip Korsholm. 2021. Remote attestation: a literature review. arXiv
preprint arXiv:2105.02466 (2021).

[4] David Blackman and Sebastiano Vigna. 2021. Scrambled linear pseudorandom number generators. ACM Transactions
on Mathematical Software (TOMS) 47, 4 (2021), 1–32.

[5] Stephen Cass. 2021. Top Programming Languages: Our Eighth Annual Probe into What’s Hot and Not. IEEE Spectrum
58, 10 (2021), 17–17.

[6] Mariano Ceccato, Mila Dalla Preda, Jasvir Nagra, Christian Collberg, and Paolo Tonella. 2007. Barrier slicing for remote
software trusting. In Seventh IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM
2007). IEEE, 27–36.

[7] Mariano Ceccato, Mila Dalla Preda, Jasvir Nagra, Christian Collberg, and Paolo Tonella. 2009. Trading-off security and
performance in barrier slicing for remote software entrusting. Automated Software Engineering 16, 2 (2009), 235–261.

[8] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Bart Coppens, Bjorn De Sutter, Paolo Falcarin, and Marco Torchiano.
2017. How professional hackers understand protected code while performing attack tasks. In 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). IEEE, 154–164.

[9] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo Falcarin, Marco Torchiano, Bart Coppens, and Bjorn De Sutter.
2019. Understanding the behaviour of hackers while performing attack tasks in a professional setting and in a public
challenge. Empirical Software Engineering 24, 1 (01 Feb 2019), 240–286. DOI:http://dx.doi.org/10.1007/s10664-018-
9625-6

[10] Mariano Ceccato, Paolo Tonella, Mila Dalla Preda, and Anirban Majumdar. 2009. Remote software protection by
orthogonal client replacement. In Proceedings of the 2009 ACM symposium on Applied Computing. 448–455.

[11] Haehyun Cho, Jongsu Lim, Hyunki Kim, and Jeong Hyun Yi. 2016. Anti-debugging scheme for protecting mobile apps
on android platform. The Journal of Supercomputing 72, 1 (2016), 232–246. DOI:http://dx.doi.org/10.1007/s11227-015-
1559-9

[12] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen, Brian O’Hanlon, John Ramsdell, Ariel
Segall, Justin Sheehy, and Brian Sniffen. 2011. Principles of remote attestation. International Journal of Information
Security 10 (2011), 63–81.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

http://dx.doi.org/10.1145/3015135.3015142
http://dx.doi.org/10.1007/s10664-018-9625-6
http://dx.doi.org/10.1007/s10664-018-9625-6
http://dx.doi.org/10.1007/s11227-015-1559-9
http://dx.doi.org/10.1007/s11227-015-1559-9

1:38 Davide Pizzolotto, Stefano Berlato, and Mariano Ceccato

[13] Christian Collberg, GR Myles, and Andrew Huntwork. 2003. Sandmark-a tool for software protection research. IEEE
security & privacy 1, 4 (2003), 40–49.

[14] Christian S. Collberg and Clark Thomborson. 2002. Watermarking, tamper-proofing, and obfuscation-tools for software
protection. IEEE Transactions on software engineering 28, 8 (2002), 735–746.

[15] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. 2016. A Survey of Man In The Middle Attacks. IEEE Communications
Surveys Tutorials 18, 3 (2016), 2027–2051. DOI:http://dx.doi.org/10.1109/COMST.2016.2548426

[16] Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfuscation of virtualization-obfuscated software: a semantics-
based approach. In Proceedings of the 18th ACM conference on Computer and communications security. 275–284.

[17] Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E Eghan, and Bram Adams. 2020. On the impact of interlanguage depen-
dencies in multilanguage systems empirical case study on java native interface applications (JNI). IEEE Transactions on
Reliability 70, 1 (2020), 428–440.

[18] Erik Kain. 2012. ’Diablo III’ Fans Should Stay Angry About Always-Online DRM. https://www.forbes.com/sites/
erikkain/2012/05/17/diablo-iii-fans-should-stay-angry-about-always-online-drm/?sh=131cd5691853. (2012). [Online;
accessed 03 February 2023].

[19] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. 1998. Cryptanalytic attacks on pseudorandom number
generators. In International workshop on fast software encryption. Springer, 168–188.

[20] Wen Li, Ming Jiang, Xiapu Luo, and Haipeng Cai. 2022. POLYCRUISE: A Cross-Language Dynamic Information Flow
Analysis. In 31st USENIX Security Symposium (USENIX Security 22) (2022), 2513–2530.

[21] Kyeonghwan Lim, Jaemin Jeong, Seong-je Cho, Jongmoo Choi, Minkyu Park, Sangchul Han, and Seongtae Jhang.
2017. An Anti-Reverse Engineering Technique using Native code and Obfuscator-LLVM for Android Applications. In
Proceedings of the International Conference on Research in Adaptive and Convergent Systems (2017-09-20). ACM, 217–221.
DOI:http://dx.doi.org/10.1145/3129676.3129708

[22] Kyeonghwan Lim, Younsik Jeong, Seong-je Cho, Minkyu Park, and Sangchul Han. 2016. An Android Application
Protection Scheme against Dynamic Reverse Engineering Attacks. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications 7, 3 (2016), 40–52. DOI:http://dx.doi.org/10.22667/JOWUA.2016.09.31.040
Number: 3.

[23] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java virtual machine specification (java SE 8
edition ed.). Addison-Wesley. https://docs.oracle.com/javase/specs/jvms/se8/html/

[24] Felix Matenaar and Jeffrey Forristal. 2014. Mobile devices with inhibited application debugging and methods of
operation. (2014). https://patents.google.com/patent/US8925077/en Library Catalog: Google Patents.

[25] Michael McWhertor. 2022. Gran Turismo 7, offline for more than 24 hours, shows its always-online problem. https:
//www.polygon.com/22984748/gran-turismo-7-maintenance-downtime-credits-car-prices. (2022). [Online; accessed
03 February 2023].

[26] Jerome Miecznikowski and Laurie Hendren. 2002. Decompiling Java bytecode: Problems, traps and pitfalls. In
International Conference on Compiler Construction. Springer, 111–127.

[27] Bernhard Mueller, Sven Schleier, Jeroen Willemsen, and Carlos Holguera. 2022. OWASP MSTG: Mobile Security
Testing Guide. (2022). https://github.com/OWASP/owasp-mastg/

[28] Ilya Nevolin and Bjorn De Sutter. 2017. Advanced Techniques For Anti Debugging. (2017). https://lib.ugent.be/catalog/
rug01:002367296

[29] John Papadopoulos. 2019. Call of Duty: Modern Warfare is always-online on the PC, even for its single-player
campaign. https://www.dsogaming.com/news/call-of-duty-modern-warfare-is-always-online-on-the-pc-even-for-
its-single-player-campaign/. (2019). [Online; accessed 03 February 2023].

[30] Davide Pizzolotto and Mariano Ceccato. 2018. Obfuscating Java Programs by Translating Selected Portions of Bytecode
to Native Libraries. In 2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 40–49. DOI:http://dx.doi.org/10.1109/SCAM.2018.00012

[31] Davide Pizzolotto, Roberto Fellin, and Mariano Ceccato. 2019. OBLIVE: Seamless Code Obfuscation for Java Programs
and Android Apps. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER).
629–633. DOI:http://dx.doi.org/10.1109/SANER.2019.8667982

[32] Rolf Rolles. 2009. Unpacking virtualization obfuscators. In 3rd USENIX Workshop on Offensive Technologies.(WOOT).
[33] Bert Abrath Stijn Volckaert, Bjorn De Sutter. 2018. Self-debugging. (2018). https://patents.google.com/patent/

EP3330859A1/en Library Catalog: Google Patents.
[34] Alessio Viticchié, Cataldo Basile, Andrea Avancini, Mariano Ceccato, Bert Abrath, and Bart Coppens. 2016. Reactive

attestation: Automatic detection and reaction to software tampering attacks. In Proceedings of the 2016 ACM workshop
on software PROtection. 73–84.

[35] Alessio Viticchié, Cataldo Basile, and Antonio Lioy. 2017. Remotely assessing integrity of software applications by
monitoring invariants: Present limitations and future directions. In International Conference on Risks and Security of
Internet and Systems. Springer, 66–82.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

http://dx.doi.org/10.1109/COMST.2016.2548426
https://www.forbes.com/sites/erikkain/2012/05/17/diablo-iii-fans-should-stay-angry-about-always-online-drm/?sh=131cd5691853
https://www.forbes.com/sites/erikkain/2012/05/17/diablo-iii-fans-should-stay-angry-about-always-online-drm/?sh=131cd5691853
http://dx.doi.org/10.1145/3129676.3129708
http://dx.doi.org/10.22667/JOWUA.2016.09.31.040
https://docs.oracle.com/javase/specs/jvms/se8/html/
https://patents.google.com/patent/US8925077/en
https://www.polygon.com/22984748/gran-turismo-7-maintenance-downtime-credits-car-prices
https://www.polygon.com/22984748/gran-turismo-7-maintenance-downtime-credits-car-prices
https://github.com/OWASP/owasp-mastg/
https://lib.ugent.be/catalog/rug01:002367296
https://lib.ugent.be/catalog/rug01:002367296
https://www.dsogaming.com/news/call-of-duty-modern-warfare-is-always-online-on-the-pc-even-for-its-single-player-campaign/
https://www.dsogaming.com/news/call-of-duty-modern-warfare-is-always-online-on-the-pc-even-for-its-single-player-campaign/
http://dx.doi.org/10.1109/SCAM.2018.00012
http://dx.doi.org/10.1109/SANER.2019.8667982
https://patents.google.com/patent/EP3330859A1/en
https://patents.google.com/patent/EP3330859A1/en

Mitigating Debugger-based Attacks to Java Applications with Self-Debugging 1:39

[36] Alessio Viticchié, Leonardo Regano, Cataldo Basile, Marco Torchiano, Mariano Ceccato, and Paolo Tonella. 2020.
Empirical assessment of the effort needed to attack programs protected with client/server code splitting. Empirical
Software Engineering 25, 1 (01 Jan 2020), 1–48. DOI:http://dx.doi.org/10.1007/s10664-019-09738-1

[37] Jia Wan, Mohammad Zulkernine, and Clifford Liem. 2018. A Dynamic App Anti-Debugging Approach on Android
ART Runtime. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech) (2018-08). IEEE, 560–567. DOI:http://dx.doi.org/10.1109/DASC/PiCom/
DataCom/CyberSciTec.2018.00105

[38] Junfeng Xu, Li Zhang, Yunchuan Sun, Dong Lin, and Ye Mao. 2015. Toward a Secure Android Software Protection
System. In 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (2015-10). IEEE,
2068–2074. DOI:http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.307 event-place: LIVERPOOL, United
Kingdom.

Received 26 September 2022; revised 3 May 2023; accepted 13 October 2023

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.

http://dx.doi.org/10.1007/s10664-019-09738-1
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00105
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00105
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.307

	Abstract
	1 Introduction
	2 Related Work
	2.1 Java-Level Anti-Debugging Protections
	2.2 Native-Level Anti-Debugging Protections
	2.3 Client-Server Code Splitting

	3 Background
	3.1 Debugging in Java
	3.2 Debugging Binary Code
	3.3 Java2c

	4 Anti-debugging at C level
	4.1 Overview and Configuration
	4.2 Time-Check
	4.3 Self-Debugging
	4.4 Overview
	4.5 Research challenge 1: Ensuring Protection Integrity
	4.6 Research challenge 2: Preventing Attack to the Communication Channel

	5 Anti-debugging at Java level
	5.1 High-Level Design
	5.2 Damaging the Java Debugger Back-end

	6 Experimental Evaluation
	6.1 Research Questions
	6.2 Debugging Tasks
	6.3 Metrics
	6.4 Case studies
	6.5 Experimental procedure
	6.6 RQ1 - Analysis of Resiliency
	6.7 RQ2 - Analysis of Robustness
	6.8 RQ3 - Analysis of Overhead

	7 Discussion
	7.1 Maximizing Resiliency
	7.2 Possible Attacks
	7.3 Threats to Validity

	8 Conclusion
	Acknowledgments
	References

